Learn More
We consider a thin elastic sheet adhering to a stiff substrate by means of the surface tension of a thin liquid layer. Debonding is initiated by imposing a vertical displacement at the centre of the sheet and leads to the formation of a delaminated region, or 'blister'. This experiment reveals that the perimeter of the blister takes one of three different(More)
We report directional memory of spontaneous nanoscale displacements of an individual bead firmly anchored to the cytoskeleton of a living cell. A novel method of analysis shows that for shorter time intervals cytoskeletal displacements are antipersistent and thus provides direct evidence in a living cell of molecular trapping and caged dynamics. At longer(More)
We investigate the instabilities of a flat elastic ribbon subject to twist under tension and develop an integrated phase diagram of the observed shapes and transitions. We find that the primary buckling mode switches from being localized longitudinally along the length of the ribbon to transverse above a triple point characterized by a crossover tension(More)
We show that a granular suspension, composed of particles immersed in a liquid, can form pearls, hooks, and arches when deposited from a nozzle onto a translating substrate that acts as a liquid super-absorber. The removal of the liquid induces a rapid pinning of the contact line leading to mechanically stable structures that are held together by capillary(More)
A dense granular suspension dripping on an imbibing surface is observed to give rise to slender mechanically stable structures that we call granular towers. Successive drops of grain-liquid mixtures are shown to solidify rapidly upon contact with a liquid absorbing substrate. A balance of excess liquid flux and drainage rate is found to capture the typical(More)
  • 1