Julien Cattel

Learn More
Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations).(More)
In mosquitoes, the maternally inherited bacterial Wolbachia induce a form of embryonic lethality called cytoplasmic incompatibility (CI). This property can be used to reduce the density of mosquito field populations through inundative releases of incompatible males in order to sterilize females (Incompatible Insect Technique, or IIT, strategy). We have(More)
The invasive pest Drosophila suzukii is characterized by a specific fresh-fruit targeting behavior and has quickly become a menace for the fruit economy of newly infested North American and European regions. D. suzukii carries a strain of the endosymbiotic bacterium Wolbachia, named wSuz, which has a low infection frequency and no reproductive manipulation(More)
The maternally inherited bacterium Wolbachia is well known for spreading in natural populations by manipulating the reproduction of its arthropod hosts, but can also have mutualist effects that increase host fitness. In mosquitoes and Drosophila some Wolbachia strains can lead to an increase in survival of virus-infected insects, and in most cases this is(More)
The image for Fig 1 is incorrect. Please see the corrected Fig 1 here. Copyright: © 2016 Cattel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • 1