Learn More
Understanding the mechanistic bases of neuronal synchronization is a current challenge in quantitative neuroscience. We studied this problem in two putative cellular pacemakers of the mammalian hippocampal theta rhythm: glutamatergic stellate cells (SCs) of the medial entorhinal cortex and GABAergic oriens-lacunosum-molecular (O-LM) interneurons of(More)
Estimating the degree of synchrony or reliability between two or more spike trains is a frequent task in both experimental and computational neuroscience. In recent years, many different methods have been proposed that typically compare the timing of spikes on a certain time scale to be optimized by the analyst. Here, we propose the ISI-distance, a simple(More)
Electrophysiologically, stellate cells (SCs) from layer II of the medial entorhinal cortex (MEC) are distinguished by intrinsic 4- to 12-Hz subthreshold oscillations. These oscillations are thought to impose a pattern of slow periodic firing that may contribute to the parahippocampal theta rhythm in vivo. Using stimuli with systematically differing(More)
Actions of inhibitory interneurons organize and modulate many neuronal processes, yet the mechanisms and consequences of plasticity of inhibitory synapses remain poorly understood. We report on spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. After pairing presynaptic stimulations at time t(pre) with evoked postsynaptic(More)
Use-dependent forms of synaptic plasticity have been extensively characterized at chemical synapses, but a relationship between natural activity and strength at electrical synapses remains elusive. The thalamic reticular nucleus (TRN), a brain area rich in gap-junctional (electrical) synapses, regulates cortical attention to the sensory surround and(More)
Abstract Stellate cells (SCs) of the entorhinal cortex generate prominent subthreshold oscillations that are believed to be important contributors to the hippocampal theta rhythm. The slow inward rectifier Ih is expressed prominently in SCs and has been suggested to be a dominant factor in their integrative properties. We studied the input-output(More)
Electrical coupling mediates interactions between neurons of the thalamic reticular nucleus (TRN), which play a critical role in regulating thalamocortical and corticothalamic communication by inhibiting thalamic relay cells. Accumulating evidence has shown that asymmetry of electrical synapses is a fundamental and dynamic property, but the effect of(More)
Actions of inhibitory interneurons organize and modulate many neuronal processes, yet the mechanisms and consequences of plasticity of inhibitory synapses remains poorly understood. We report on spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. After pairing presynaptic stimulations at time with evoked postsynaptic spikes at(More)
Measures of multiple spike train synchrony are essential in order to study issues such as spike timing reliability, network synchronization, and neuronal coding. These measures can broadly be divided in multivariate measures and averages over bivariate measures. One of the most recent bivariate approaches, the ISI-distance, employs the ratio of(More)
THALAMIC NEURONS FLUCTUATE BETWEEN TWO STATES: a hyperpolarized state associated with burst firing and sleep spindles, and a depolarized state associated with tonic firing and rapid, reliable information transmission between the sensory periphery and cortex. The thalamic reticular nucleus (TRN) plays a central role in thalamocortical processing by providing(More)