Julie Rocho-Levine

Learn More
Attaching bio-telemetry or -logging devices ('tags') to marine animals for research and monitoring adds drag to streamlined bodies, thus affecting posture, swimming gaits and energy balance. These costs have never been measured in free-swimming cetaceans. To examine the effect of drag from a tag on metabolic rate, cost of transport and swimming behavior,(More)
We measured esophageal pressures, respiratory flow rates, and expired O2 and CO2 in six adult bottlenose dolphins (Tursiops truncatus) during voluntary breaths and maximal (chuff) respiratory efforts. The data were used to estimate the dynamic specific lung compliance (sCL), the O2 consumption rate (V̇O2 ) and CO2 production rates (V̇CO2 ) during rest. Our(More)
The accurate estimation of field metabolic rates (FMR) in wild animals is a key component of bioenergetic models, and is important for understanding the routine limitations for survival as well as individual responses to disturbances or environmental changes. Several methods have been used to estimate FMR, including accelerometer-derived activity budgets,(More)
  • 1