Learn More
The influence of background illumination on saccades towards small target LEDs was examined in three rhesus monkeys. In darkness, fixational saccades and those aimed at horizontal targets had a trajectory that was biased upward. This bias was not observed in the illuminated condition. For horizontal saccades, the magnitude of the vertical final errors(More)
It is known that expectation of reward speeds up saccades. Past studies have also shown the presence of a saccadic velocity bias in the orbit, resulting from a biomechanical regulation over varying eccentricities. Nevertheless, whether and how reward expectation interacts with the biomechanical regulation of saccadic velocities over varying eccentricities(More)
The effects of unilateral cFN inactivation on horizontal and vertical gaze shifts generated from a central target toward peripheral ones were tested in two head unrestrained monkeys. After muscimol injection, the eye component was hypermetric during ipsilesional gaze shifts, hypometric during contralesional ones and deviated toward the injected side during(More)
UNLABELLED When an object moves in the visual field, its motion evokes a streak of activity on the retina and the incoming retinal signals lead to robust oculomotor commands because corrections are observed if the trajectory of the interceptive saccade is perturbed by a microstimulation in the superior colliculus. The present study complements a previous(More)
When primates maintain their gaze directed toward a visual target (visual fixation), their eyes display a combination of miniature fast and slow movements. An involvement of the cerebellum in visual fixation is indicated by the severe gaze instabilities observed in patients suffering from cerebellar lesions. Recent studies in non-human primates have(More)
The contribution of the cerebellar vermal lobules Vic/VII and of the caudal part of the fastigial nucleus (cFN) to the control of saccadic eye movements has been established by converging neurophysiological approaches. The precise delineation of these saccade-related territories in the medio-posterior cerebellum (MPC) has stimulated the development of(More)
The location of motor-related activity in the deeper layers of the superior colliculus (SC) is thought to generate a desired displacement command specifying the amplitude and direction of saccadic eye movements. However, the amplitude of saccadic eye movements made to visual targets can be systematically altered by surreptitiously moving the target location(More)
It has been shown that inactivation of the caudal fastigial nucleus (cFN) by local injection of muscimol leads to inaccurate gaze shifts in the head-unrestrained monkey and that the gaze dysmetria is primarily due to changes in the horizontal amplitude of eye saccades in the orbit. Moreover, changes in the relationship between amplitude and duration are(More)
Lesions in the caudal fastigial nucleus (cFN) severely impair the accuracy of visually guided saccades in the head-restrained monkey. Is the saccade dysmetria a central perturbation in issuing commands for orienting gaze (eye in space) or is it a more peripheral impairment in generating oculomotor commands? This question was investigated in two(More)
24 25 When primates maintain their gaze directed toward a visual target (visual fixation), their eyes 26 display a combination of miniature fast and slow movements. An involvement of the 27 cerebellum in visual fixation is indicated by the severe gaze instabilities observed in patients 28 suffering from cerebellar lesions. Recent studies in non-human(More)