Julie Nijmeh

Learn More
Pulmonary artery obstruction and subsequent lung ischemia have been shown to induce systemic angiogenesis despite preservation of normoxia. The underlying mechanisms, however, remain poorly understood. In a mouse model of lung ischemia induced by left pulmonary artery ligation (LPAL), we showed previously, the formation of a new systemic vasculature to the(More)
Human endothelial cells (EC) are typically resistant to the apoptotic effects of stimuli associated with lung disease. The determinants of this resistance remain incompletely understood. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by human pulmonary artery EC (HPAEC). Its expression increases in response to various(More)
The role of angiogenesis in the growth and metastasis of solid tumors is well established. However, the role of angiogenesis in hematologic malignancies was only recently appreciated. We show that HTLV-I-transformed T cells, but not HTLV-I-negative CD4(+) T cells, secrete biologically active forms of vascular endothelial growth factor (VEGF) and basic(More)
In just the past 5 years, dramatic changes have occurred in the clinical management of tuberous sclerosis complex (TSC). Detailed knowledge about the role of the TSC proteins in regulating the activity of the mammalian target of rapamycin complex 1 (mTORC1) underlies this paradigm-shifting progress. Advances continue to be made in understanding the genetic(More)
p62/sequestosome-1 (SQSTM1) is a multifunctional adaptor protein and autophagic substrate that accumulates in cells with hyperactive mTORC1, such as kidney cells with mutations in the tumor suppressor genes tuberous sclerosis complex (TSC)1 or TSC2. Here we report that p62 is a critical mediator of TSC2-driven tumorigenesis, as Tsc2+/- and Tsc2f/f(More)
Tuberous sclerosis complex (TSC) is a multisystem disease associated with hyperactive mTORC1. The impact of TSC1/2 deficiency on lysosome-mediated processes is not fully understood. We report here that inhibition of lysosomal function using chloroquine (CQ) upregulates cholesterol homeostasis genes in TSC2-deficient cells. This TSC2-dependent(More)
  • 1