Julie M. Leslie

Learn More
Mechanical loads induce profound anabolic effects in the skeleton, but the molecular mechanisms that transduce such signals are still poorly understood. In this study, we demonstrate that the hypoxia-inducible factor-1α (Hif-1α) is acutely up-regulated in response to exogenous mechanical stimuli secondary to prostanoid signaling and Akt/mTOR (mammalian(More)
The canonical Wnt signaling pathway is critical for skeletal development and maintenance, but the precise roles of the individual Wnt co-receptors, Lrp5 and Lrp6, that enable Wnt signals to be transmitted in osteoblasts remain controversial. In these studies, we used Cre-loxP recombination, in which Cre-expression is driven by the human osteocalcin(More)
Fifty-eight patients with human immunodeficiency virus infection were analyzed for clinical manifestations and potential risk factors for Pseudomonas aeruginosa infection by use of case-control methodology. Most had AIDS. Of 73 episodes of P. aeruginosa infection, 45 (62%) were bacteremias primarily associated with central venous catheters (16), pneumonia(More)
This report describes the evaluation of N-thiolated beta-lactam antibiotics as potential anti-Bacillus agents. N-Thiolated beta-lactams are a new family of antibacterials that previously have been found to selectively inhibit the growth of Staphylococcus bacteria over many other genera of microbes. From the data presented herein, these lactams similarly(More)
N-Thiolated beta-lactams are a new family of antibacterials that inhibit the growth of Staphylococcus bacteria. Unlike other beta-lactam drugs, these compounds retain their full antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains and operate through a different mode of action. The structural features, which give these(More)
  • 1