Learn More
Multiple sclerosis1 (MS) is an immune-mediated autoimmune demyelinating disease in humans. The initiating event in MS is unknown, but epidemiological evidence suggests that virus infections may be important and one possible mechanism for induction of infection-induced autoimmune disease is molecular mimicry. To test the ability of a virus encoding a self(More)
Molecular mimicry is the main postulated mechanism by which infectious agents induce autoimmune disease. A number of animal models have been utilized to establish a link between molecular mimicry and autoimmunity. However, a model of infectious disease whereby a natural pathogen expressing a known mimic epitope can induce autoimmunity to a known(More)
Three myotropic peptides belonging to the Arg-amide insect tachykinin family were isolated from whole-body extracts of the mosquito, Culex salinarius. The peptides, APSGFMGMR-NH2, APYGFTGMR-NH2 and APSGFFGMR-NH2 (designated culetachykinin I, II, and III) were isolated and purified on the basis of their ability to stimulate muscle contractions of isolated(More)
Molecular mimicry is the process by which T cells activated in response to determinants on an infecting microorganism cross-react with self epitopes, leading to an autoimmune disease. Normally, infection of SJL/J mice with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) results in a persistent CNS infection, leading to a chronic(More)
The role of microglia and their contribution to the development and maintenance of pain states has emerged as an attractive field of study. Sensitization of central nociceptors and interneurons is thought to be responsible for the symptoms of chronic neuropathic pain states. Microglia interact with these neurons at the site of injury or disease as well as(More)
H(+) extrusion is important for sustained NADPH oxidase activation after "respiratory" burst in macrophage/microglia activation. In this study, we investigated the role of Na(+)/H(+) exchanger isoform 1 (NHE-1) in activation of microglia after lipopolysaccharide (LPS) or oxygen and glucose deprivation and reoxygenation (OGD/REOX) exposure. NHE-1 functioned(More)
Microglia are the resident immune cells of the central nervous system (CNS) and share many immunological characteristics with peripheral macrophage. Microglia exist in a quiescent state in the healthy CNS, however, upon injury or infection, microglia become activated immune cells. Microglia have been implicated in playing an important role in several(More)
An antiserum raised against the peptide, culetachykinin II, immunocytochemically detected a group of neurosecretory cells in the first flagellar segment of the antennae of both males and females of the mosquito, Culex salinarius. This is the first insect species in which neurosecretory cells have been found in the antennae. The ultrastructure of these(More)
Theiler's murine encephalomyelitis virus (TMEV) infection of the central nervous system (CNS) induces a chronic, progressive demyelinating disease in susceptible mouse strains characterized by inflammatory mononuclear infiltrates and spastic hind limb paralysis. Our lab has previously demonstrated a critical role for TMEV- and myelin-specific CD4(+) T cells(More)