Julie Ehrhart

Learn More
Although the etiology for many neurodegenerative diseases is unknown, the common findings of mitochondrial defects and oxidative damage posit these events as contributing factors. The temporal conundrum of whether mitochondrial defects lead to enhanced reactive oxygen species generation, or conversely, if oxidative stress is the underlying cause of the(More)
Chronic brain inflammation is the common final pathway in the majority of neurodegenerative diseases and central to this phenomenon is the immunological activation of brain mononuclear phagocyte cells, called microglia. This inflammatory mechanism is a central component of HIV-associated dementia (HAD). In the healthy state, there are endogenous signals(More)
Amyloid-beta (Abeta) immunization efficiently reduces amyloid plaque load and memory impairment in transgenic mouse models of Alzheimer's disease (AD). Active Abeta immunization has also yielded favorable results in a subset of AD patients. However, a small percentage of patients developed severe aseptic meningoencephalitis associated with brain(More)
Glutamate receptor involvement and oxidative stress have both been implicated in damage to neurons due to impairment of energy metabolism. Using two different neuronal in vitro model systems, an ex vivo chick retinal preparation and dopamine neurons in mesencephalic culture, the involvement and interaction of these events as early occurring contributors to(More)
Examination of the downstream mediators responsible for inhibition of mitochondrial respiration by dopamine (DA) was investigated. Consistent with findings reported by others, exposure of rat brain mitochondria to 0.5 mm DA for 15 min at 30 degrees C inhibited pyruvate/glutamate/malate-supported state-3 respiration by 20%. Inhibition was prevented in the(More)
Compromised mitochondrial energy metabolism and oxidative stress have been associated with the pathophysiology of Parkinson's disease. Our previous experiments exemplified the importance of GSH in the protection of neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. This study further defines the role of(More)
Glutaredoxin (Grx) is a specific and efficient catalyst of glutathione-dependent deglutathionylation of protein-SS-glutathione mixed disulfides. Grx has been identified in brain cytosol, but the presence of activity in subcellular organelles has not been reported. Increases in protein glutathionylation are likely to occur in mitochondria during oxidative(More)
A decrease in total glutathione, and aberrant mitochondrial bioenergetics have been implicated in the pathogenesis of Parkinson's disease. Our previous work exemplified the importance of glutathione (GSH) in the protection of mesencephalic neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. Additionally,(More)
  • 1