Julie E. M. McGeoch

Learn More
In this article we show that a channel complex of cooperatively interacting subunits can produce a power law spectrum with the slope of the spectrum depending on the strength of the cooperative interaction. The effects of cooperativity are explored via a computational model of a calcium-regulated cation channel for which new data is presented. The results,(More)
A protein of mass 7643 Da and sequence identical to that of subunit c, the pore part, of the mitochondrial adenosine triphosphate synthase complex, was co-purified with cholesterol in crystals formed from a chloroform/methanol extract of bovine brain gray matter plasma membranes. Reconstitution of the protein-containing crystals in phospholipid bilayers and(More)
We consider an ancient protein, and water as a smooth surface, and show that the interaction of the two allows the protein to change its hydrogen bonding to encapsulate the water. This property could have made a three-dimensional microenvironment, 3-4 Gyr ago, for the evolution of subsequent complex water-based chemistry. Proteolipid, subunit c of ATP(More)
The insulin-stimulated cation channel previously identified in patch-clamped muscle preparations is here shown to be responsible for bulk Na+ entry into the cell. The mainly Na+ current of the channel was shown to be accompanied by an inhibitory Ca2+ component responsible for oscillations. Here, using quantitative fluorescence imaging of Fura-2- and(More)
Patients with multiple myeloma excrete immunoglobulin light chain (Bence-Jones protein) in the urine. Light chain accumulates in the nephron, and this may result in renal disease, which accounts for the death of between 1 in 4 and 1 in 7 patients with multiple myeloma. Myeloma light chain inhibits transport of paraaminohippurate in the kidney. Evidence is(More)
A hypothesis is outlined that the neurodegeneration of the Batten disease syndromes that involve an overaccumulation of subunit c is caused by a newly characterized function of the protein, its ability to assemble in the plasma membrane into ion pores (J. E. M. McGeoch and G. Guidotti, Brain Res 766: 188-194, 1997), rendering the cell liable to constant(More)
Subunit c of ATP synthase functions as a high conductance ion channel, tightly regulated by calcium. We have suggested that the pathogenesis of Batten syndromes involving overaccumulation of subunit c are linked to the protein's ion channel function. In normal electrically excitable tissue the channel could act as a pacer setting nodal voltage via control(More)
  • 1