Learn More
This paper addresses the problem of recognizing multiple rigid objects that are common to two images. We propose a generic algorithm that allows to simultaneously decide if one or several objects are common to the two images and to estimate the corresponding geometric transformations. The considered transformations include similarities, homographies and(More)
The scale invariant feature transform (SIFT) algorithm, commonly used in computer vision, does not perform well on synthetic aperture radar (SAR) images, in particular because of the strong intensity and the multiplicative nature of the noise. We present an improvement of this algorithm for SAR images. First, a robust yet simple way to compute gradient on(More)
In this paper, we address the problem of the restoration of images which have been affected by impulse noise or by a mixture of Gaussian and impulse noise. We rely on a patch-based approach, which requires careful choices for both the distance between patches and for the statistical estimator of the original patch. Experiments are led in the case of pure(More)
In this work, we propose a method to segment a 1-D histogram without a priori assumptions about the underlying density function. Our approach considers a rigorous definition of an admissible segmentation, avoiding over and under segmentation problems. A fast algorithm leading to such a segmentation is proposed. The approach is tested both with synthetic and(More)
This paper introduces a new texture analysis scheme, which is invariant to local geometric and radiometric changes. The proposed methodology relies on the topographic map of images, obtained from the connected components of level sets. This morphological tool, providing a multi-scale and contrast-invariant representation of images, is shown to be well(More)
Accurate junction detection and characterization are of primary importance for several aspects of scene analysis, including depth recovery and motion analysis. In this work, we introduce a generic junction analysis scheme. The first asset of the proposed procedure is an automatic criterion for the detection of junctions, permitting to deal with textured(More)
A unified a contrario detection method is proposed to solve three classical problems in clustering analysis. The first one is to evaluate the validity of a cluster candidate. The second problem is that meaningful clusters can contain or be contained in other meaningful clusters. A rule is needed to define locally optimal clusters by inclusion. The third(More)
Satellite images with high spatial resolution raise many challenging issues in image understanding and pattern recognition. First, they allow measurement of small objects maybe up to 0.5 m, and both texture and geometrical structures emerge simultaneously. Second, objects in the same type of scenes might appear at different scales and orientations.(More)