Julie D. Forman-Kay

Learn More
The N-terminal SH3 domain of drk (drkN SH3 domain) exists in equilibrium between a folded (F(exch)) and an unfolded (U(exch)) form under non-denaturing conditions. In order to further our previous descriptions of the U(exch) state, we have developed a protocol for calculating ensembles of structures, based on experimental spectroscopic data, which broadly(More)
Intrinsically disordered proteins play important roles in cell signalling, transcription, translation and cell cycle regulation. Although they lack stable tertiary structure, many intrinsically disordered proteins undergo disorder-to-order transitions upon binding to partners. Similarly, several folded proteins use regulated order-to-disorder transitions to(More)
REVIEW REVIEW The common view is that functional proteins or protein domains have unique and stable 3D structures characterized by the relatively fixed positions of their atoms and backbone Ramachandran angles that both vary slightly around their equilibrium positions due to low-amplitude thermal fluctuations. In addition there is another class of(More)
Interactions between the WW domains of Drosophila Nedd4 (dNedd4) and Commissureless (Comm) PY motifs promote axon crossing at the CNS midline and muscle synaptogenesis. Here we report the solution structure of the dNedd4 WW3* domain complexed to the second PY motif (227'TGLPSYDEALH237') of Comm. Unexpectedly, there are interactions between WW3* and ligand(More)
Disordered states of proteins include the biologically functional intrinsically disordered proteins and the unfolded states of normally folded proteins. In recent years, ensemble-modeling strategies using various experimental measurements as restraints have emerged as powerful means for structurally characterizing disordered states. However, these methods(More)
The epithelial Na+ channel (alphabetagammaENaC) regulates salt and fluid homeostasis and blood pressure. Each ENaC subunit contains a PY motif (PPXY) that binds to the WW domains of Nedd4, a Hect family ubiquitin ligase containing 3-4 WW domains and usually a C2 domain. It has been proposed that Nedd4-2, but not Nedd4-1, isoforms can bind to and suppress(More)
The solution structure of the C-terminal SH2 domain of phospholipase C-gamma 1 (PLC-gamma 1), in complex with a phosphopeptide corresponding to its Tyr-1021 high affinity binding site on the platelet-derived growth factor receptor, has been determined by nuclear magnetic resonance spectroscopy. The topology of the SH2-phosphopeptide complex is similar to(More)
Ubiquitination of proteins is an abundant modification that controls numerous cellular processes. Many Ubiquitin (Ub) protein ligases (E3s) target both their substrates and themselves for degradation. However, the mechanisms regulating their catalytic activity are largely unknown. The C2-WW-HECT-domain E3 Smurf2 downregulates transforming growth factor-beta(More)
Low solubility is a major stumbling block in the detailed structural and functional characterization of many proteins and isolated protein domains. The production of some proteins in a soluble form may only be possible through alteration of their sequences by mutagenesis. The feasibility of this approach has been demonstrated in a number of cases where(More)
The goal of pE-DB (http://pedb.vib.be) is to serve as an openly accessible database for the deposition of structural ensembles of intrinsically disordered proteins (IDPs) and of denatured proteins based on nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and other data measured in solution. Owing to the inherent flexibility of IDPs,(More)