Julie Borgel

Learn More
DNA methylation is extensively reprogrammed during the early phases of mammalian development, yet genomic targets of this process are largely unknown. We optimized methylated DNA immunoprecipitation for low numbers of cells and profiled DNA methylation during early development of the mouse embryonic lineage in vivo. We observed a major epigenetic switch(More)
The INK4B-ARF-INK4A (INK/ARF) locus is composed of three tumor suppressor genes, which are kept silenced by DNA methylation in different cancer types. In addition, a non-coding RNA (ANRIL) is transcribed in the anti-sense orientation upstream of the ARF gene. The resulting divergent promoter region is bound by the chromatin insulator protein CTCF in(More)
The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis.(More)
Methylated DNA immunoprecipitation (MeDIP) is an immunocapturing approach for unbiased enrichment of DNA that is methylated on cytosines. The principle is that genomic DNA is randomly sheared by sonication and immunoprecipitated with an antibody that specifically recognizes 5-methylcytidine (5mC), which can be combined with PCR or high-throughput analysis(More)
  • 1