Julie A Malek

Learn More
The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of(More)
A large-scale BAC end-sequencing project at The Institute for Genomic Research (TIGR) has generated one of the most extensive sets of sequence markers for the mouse genome to date. With a sequencing success rate of >80%, an average read length of 485 bp, and ABI3700 capillary sequencers, we have generated 449,234 nonredundant mouse BAC end sequences (mBESs)(More)
Progressive rod-cone degeneration (prcd) is a canine retinal disease that maps to the centromeric end of CFA9 in a region of synteny with the distal part of HSA17q. As such, prcd has been postulated as the only animal model of RP17, a human retinitis pigmentosa locus that maps to 17q22. In an effort to establish more detailed regions of synteny between dog(More)
We have studied the molecular basis of nervous system repair in invertebrate (Hirudo medicinalis) nerve cells. Unlike in mammals, neurons in invertebrates survive injury and regrow processes to restore the connections that they held before the damage occurred. To identify genes whose expression is regulated after injury, we have used subtractive probes,(More)
End sequences from bacterial artificial chromosomes (BACs) provide highly specific sequence markers in large-scale sequencing projects. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length of >460 bp for a total of 141 Mb covering approximately 4.7% of the genome. Over 60% of the clones have BAC end(More)
To understand the molecular basis of nervous system function in the leech, Hirudo medicinalis, we have isolated four novel cDNAs encoding putative voltage-gated sodium (Na) channel alpha subunits, and have analyzed the expression of these genes in individual neurons of known function. To begin, degenerate oligonucleotide primers were used in combination(More)
The F0F1 proton-translocating ATPase complex of Escherichia coli, encoded by the atpIBEFHAGDC operon, catalyzes the synthesis of ATP from ADP and Pi during aerobic and anaerobic growth when respiratory substrates are present. It can also catalyze the reverse reaction to hydrolyze ATP during nonrespiratory conditions (i.e., during fermentation of simple(More)
The Caenorhabditis elegans genome contains a single dystrophin/utrophin orthologue, dys-1. Point mutations in this gene, dys-1(cx35) and dys-1(cx18), result in truncated proteins. Such mutants offer potentially valuable worm models of human Duchenne muscular dystrophy. We have used microarrays to examine genes expressed differentially between wild-type C.(More)