Learn More
Formation of NADP+ from NAD+ is catalyzed by NAD kinase (NadK; EC 2.7.1.23). Evidence is presented that NadK is the only NAD kinase of Salmonella enterica and is essential for growth. NadK is inhibited allosterically by NADPH and NADH. Without effectors, NadK exists as an equilibrium mixture of dimers and tetramers (KD = 1.0 +/- 0.8 mM) but is converted(More)
PAS kinase is an evolutionarily conserved serine/threonine protein kinase. Mammalian PAS kinase is activated under nutrient replete conditions and is important for controlling metabolic rate and energy homeostasis. In yeast, PAS kinase acts to increase the synthesis of structural carbohydrate at the expense of storage carbohydrates through phosphorylation(More)
Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped(More)
The inability to coordinate cellular metabolic processes with the cellular and organismal nutrient environment leads to a variety of disorders, including diabetes and obesity. Nutrient-sensing protein kinases, such as AMPK and mTOR, play a pivotal role in metabolic regulation and are promising therapeutic targets for the treatment of disease. In this Extra(More)
We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein(More)
The three activities of NadR were demonstrated in purified protein and assigned to separate domains by missense mutations. The N-terminal domain represses transcription of genes for NAD synthesis and salvage. The C-terminal domain has nicotinamide ribose kinase (NmR-K; EC 2.7.1.22) activity, which is essential for assimilation of NmR, converting it(More)
Paenibacillus larvae is a Firmicute bacterium that causes American Foulbrood, a lethal disease in honeybees and is a major source of global agricultural losses. Although P. larvae phages were isolated prior to 2013, no full genome sequences of P. larvae bacteriophages were published or analyzed. This report includes an in-depth analysis of the structure,(More)
Phylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a(More)
The mammalian skeletal muscle acetylcholine receptor contains two nonequivalent acetylcholine binding sites, one each at the alpha/delta and alpha/gamma subunit interfaces. Alpha-Conotoxin MI, a 14-amino acid competitive antagonist, binds at both interfaces but has approximately 10(4) higher affinity for the alpha/delta site. We performed an "alanine walk"(More)
Salmonella enterica can obtain pyridine from exogenous nicotinamide mononucleotide (NMN) by three routes. In route 1, nicotinamide is removed from NMN in the periplasm and enters the cell as the free base. In route 2, described here, phosphate is removed from NMN in the periplasm by acid phosphatase (AphA), and the produced nicotinamide ribonucleoside (NmR)(More)