Juliane P. Caviston

Learn More
Cytokinesis in Saccharomyces cerevisiae occurs by the concerted action of the actomyosin system and septum formation. Here we report on the roles of HOF1, BNI1, and BNR1 in cytokinesis, focusing on Hof1p. Deletion of HOF1 causes a temperature-sensitive defect in septum formation. A Hof1p ring forms on the mother side of the bud neck in G2/M, followed by the(More)
Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover(More)
Cytoplasmic dynein is a multisubunit microtubule motor complex that, together with its activator, dynactin, drives vesicular cargo toward the minus ends of microtubules. Huntingtin (Htt) is a vesicle-associated protein found in both neuronal and nonneuronal cells that is thought to be involved in vesicular transport. In this study, we demonstrate through(More)
The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. Dynactin is ubiquitously expressed in eukaryotes, but a G59S mutation in the p150Glued subunit of dynactin results in the specific degeneration of motor neurons. This mutation in the conserved cytoskeleton-associated protein,(More)
The septins are a conserved family of GTP-binding, filament-forming proteins. In the yeast Saccharomyces cerevisiae, the septins form a ring at the mother-bud neck that appears to function primarily by serving as a scaffold for the recruitment of other proteins to the neck, where they participate in cytokinesis and a variety of other processes. Formation of(More)
Molecular motors drive the transport of vesicles and organelles within the cell. Traditionally, these transport processes have been considered separately from membrane trafficking events, such as regulated budding and fusion. However, recent progress has revealed mechanistic links that integrate these processes within the cell. Rab proteins, which function(More)
The neurodegenerative disorder Huntington's disease is caused by an expansion in the polyglutamine repeat region of the protein huntingtin. Multiple studies in cellular and animal model systems indicate that this mutation imparts a novel toxic function required for disease pathogenesis. However, the normal function of huntingtin, an essential cellular(More)
Arf proteins regulate membrane traffic and organelle structure. Although Arf6 is known to initiate actin-based changes in cell surface architecture, Arf1 may also function at the plasma membrane. Here we show that acute activation of protein kinase C (PKC) induced by the phorbol ester PMA led to the formation of motile actin structures on the ventral(More)
The budding yeast Saccharomyces cerevisiae initiates polarized growth or budding once per cell cycle at a specific time of the cell cycle and at a specific location on the cell surface. Little is known about the molecular nature of the temporal and spatial regulatory mechanisms. It is also unclear what factors, if any, among the numerous proteins required(More)
Rho-family GTPases Cdc42p and Rho1p play critical roles in the budding process of the yeast Saccharomyces cerevisiae. However, it is not clear how the functions of these GTPases are coordinated temporally and spatially during this process. Based on its ability to suppress cdc42-Ts mutants when overexpressed, a novel gene PXL1 was identified. Pxl1p resembles(More)