Juliana I. dos Santos

Learn More
Phospholipases A(2) (PLA(2)s) are membrane-associated enzymes that hydrolyze phospholipids at the sn-2 position, releasing lysophospholipids and free fatty acids. Phospholipase A(2) homologues (Lys49-PLA(2)s) are highly myotoxic and cause extensive tissue damage despite not showing measurable catalytic activity. They are found in different snake venoms and(More)
Snake venom metalloproteinases (SVMPs) participate in a number of important biological, physiological and pathophysiological processes and are primarily responsible for the local tissue damage characteristic of viperid snake envenomations. The use of medicinal plant extracts as antidotes against animal venoms is an old practice, especially against snake(More)
PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A(2) from Bothrops pirajai venom, was crystallized in the presence of the inhibitor rosmarinic acid (RA). This is the active compound in the methanolic extract of Cordia verbenacea, a plant that is largely used in Brazilian folk medicine. The crystals diffracted X-rays to 1.8 A resolution and the(More)
One of the main components of snake venoms are the Asp49-phospholipases A(2), also known as svPLA(2)s. The study of these toxins is a matter of great scientific interest due to their wide variety of biological effects. In this work we present strong evidences found in literature and other aspects which strengthen the importance of quaternary assembly for(More)
Phospholipases A(2) homologues are found in the venom of Crotalinae snakes, being their main action related to myonecrosis induction. Although many studies on these toxins had already been performed, their mechanism of action remains unclear. Here, important aspects about these toxins are reviewed, including their correct biological assembly and how(More)
Phospholipases A₂ (PLA₂s) are enzymes responsible for membrane disruption through Ca(2+) -dependent hydrolysis of phospholipids. Lys49-PLA₂s are well-characterized homologue PLA₂s that do not show catalytic activity but can exert a pronounced local myotoxic effect. These homologue PLA₂s were first believed to present residual catalytic activity but(More)
PrTX-I, a non-catalytic and myotoxic Lys49-PLA(2) from Bothrops pirajai venom has been crystallized alone and in complex with bromophenacyl bromide (BPB), alpha tocopherol and alpha tocopherol acetate inhibitors. These crystals have shown to diffract X-rays between 2.34 and 1.65 A resolution. All complexes crystals are isomorphous and belong to the space(More)
Local myonecrosis resulting from snakebite envenomation is not efficiently neutralized by regular antivenom administration. This limitation is considered to be a significant health problem by the World Health Organization. Phospholipase A2-like (PLA2-like) proteins are among the most important proteins related to the muscle damage resulting from several(More)
The myotoxic mechanism for PLA2-like toxins has been proposed recently to be initiated by an allosteric change induced by a fatty acid binding to the protein, leading to the alignment of the membrane docking site (MDoS) and membrane disrupting site (MDiS). Previous structural studies performed by us demonstrated that MjTX-II, a PLA2-like toxin isolated from(More)
An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-A resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous(More)