Julian Stevenson

Learn More
Saccharomyces cerevisiae telomeric DNA replicates late in S phase, and telomeric genes are transcriptionally silent. Transcriptional repression of telomere-proximal genes results from silent chromatin initiating at the chromosome end, but the relationship between telomeric chromatin and DNA replication is unknown. Mutations in SIR3, a silent chromatin(More)
Exquisite control of cholesterol synthesis is crucial for maintaining homeostasis of this vital yet potentially toxic lipid. Squalene monooxygenase (SM) catalyzes the first oxygenation step in cholesterol synthesis, acting on squalene before cyclization into the basic steroid structure. Using model cell systems, we found that cholesterol caused the(More)
The precise assembly of specific DNA sequences is a critical technique in molecular biology. Traditional cloning techniques use restriction enzymes and ligation of DNA in vitro, which can be hampered by a lack of appropriate restriction-sites and inefficient enzymatic steps. A number of ligation-independent cloning techniques have been developed, including(More)
Homogenates, total particulate and plasma membranes of cultured HeLa S cells bound the tritiated antitumor sulfonylurea [3H]LY181984 with high affinity (Kd of 20 to 50 nM). Highest affinity binding (Kd of 25 nM) was to purified plasma membrane. The number of binding sites, estimated to represent 30 to 35 pmol/mg protein, would represent a low abundance(More)
Squalene monooxygenase (SM) is an important control point in cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase. Although it is known to associate with the endoplasmic reticulum, its topology has not been determined. We have elucidated the membrane topology of the sterol-responsive domain of SM comprising the first 100 amino acids fused(More)
Single-insert cloning of DNA fragments without restriction enzymes has traditionally been achieved using TA cloning, with annealing of a polymerase chain reaction (PCR) fragment containing a single overhanging 3' A to a plasmid vector containing a 3' T. In this article, we show that the analogous "CG cloning" is faster and far more efficient, using AhdI to(More)
SM (squalene mono-oxygenase) catalyses the first oxygenation step in cholesterol synthesis, immediately before the formation of the steroid backbone at lanosterol. SM is an important control point in the pathway, and is regulated at the post-translational level by accelerated cholesterol-dependent ubiquitination and proteasomal degradation, which is(More)
Akt is an essential protein kinase for cell growth, proliferation, and survival. Perturbed Akt regulation is associated with a number of human diseases, such as cancer and diabetes. Recently, evidence has emerged that Akt is involved in the regulation of the sterol-regulatory element binding proteins, which are master transcriptional regulators of lipid(More)
The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and(More)