Learn More
TransRate is a tool for reference-free quality assessment of de novo transcriptome assemblies. Using only the sequenced reads and the assembly as input, we show that multiple common artifacts of de novo transcriptome assembly can be readily detected. These include chimeras, structural errors, incomplete assembly, and base errors. TransRate evaluates these(More)
Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana,(More)
The protein content of seeds determines their nutritive value, downstream processing properties and market value. Up to 95% of seed protein is derived from amino acids that are exported to the seed after degradation of existing protein in leaves, but the pathways responsible for this nitrogen metabolism are poorly defined. The enzyme pyruvate,orthophosphate(More)
Leaves of almost all C4 lineages separate the reactions of photosynthesis into the mesophyll (M) and bundle sheath (BS). The extent to which messenger RNA profiles of M and BS cells from independent C4 lineages resemble each other is not known. To address this, we conducted deep sequencing of RNA isolated from the M and BS of Setaria viridis and compared(More)
C(4) photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression(More)
Most plants are known as C3 plants because the first product of photosynthetic CO2 fixation is a three-carbon compound. C4 plants, which use an alternative pathway in which the first product is a four-carbon compound, have evolved independently many times and are found in at least 18 families. In addition to differences in their biochemistry, photosynthetic(More)
The capture of photons by the photosynthetic apparatus is the first step in photosynthesis in all autotrophic higher plants. This light capture is dominated by pigment-containing proteins known as light-harvesting complexes (LHCs). The xanthophyll-carotenoid complement of these LHCs (neoxanthin, violaxanthin, and lutein) is highly conserved, with no(More)
Pyruvate orthophosphate dikinase (PPDK) is a critical enzyme for C(4) photosynthesis, providing the primary acceptor for fixation of bicarbonate in mesophyll cells. Although first isolated in C(4) plants, it is also present in C(3) species. We report that the single gene encoding PPDK in Arabidopsis thaliana possesses two promoters, giving rise to two types(More)
C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a(More)
With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical(More)