Learn More
Mucus is a complex hydrogel, comprising glycoproteins, lipids, salts, DNA, enzymes and cellular debris, covering many epithelial surfaces in the human body. Once secreted, mucin forms a barrier to protect the underlying tissues against the extracellular environment. Mucus can therefore adversely affect the absorption or action of drugs administered by the(More)
UNLABELLED Understanding the bio-nano interactions in the lungs upon the inhalation of nanoparticles is a major challenge in both pulmonary nanomedicine and nanotoxicology. To investigate the effect of pulmonary surfactant protein A (SP-A) on the interaction between nanoparticles and alveolar macrophages, we used magnetite nanoparticles (110-180 nm in(More)
Research in pulmonary drug delivery has focused mainly on new particle or device technologies to improve the aerosol generation and pulmonary deposition of inhaled drugs. Although substantial progress has been made in this respect, no significant advances have been made that would lead pulmonary drug delivery beyond the treatment of some respiratory(More)
The fate of inhaled particles after deposition onto the pulmonary mucosa is far from being solved, in particular with respect to mucociliary clearance and mucus penetration. Due to the fact that these phenomena govern pulmonary residence time and thus bioavailability, they are highly relevant for any kind of controlled release formulation delivered via that(More)
In this study, the mobility of nanoparticles in mucus and similar hydrogels as model systems was assessed to elucidate the link between microscopic diffusion behavior and macroscopic penetration of such gels. Differences in particle adhesion to mucus components were strongly dependent on particle coating. Particles coated with 2 kDa PEG exhibited a(More)
The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of(More)
Aerosol gene delivery holds great therapeutical potential for many inherited and acquired pulmonary diseases. The physical instability of aqueous suspensions of non-viral vector complexes is a major limitation for their successful application. In this study, we investigated dry powder aerosols as novel gene vector formulations for gene transfer in vitro and(More)
  • 1