Julian Arthur

Learn More
Sandhoff Disease (SD) involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the β-subunit gene of β-hexosaminidase A and B (Hexb gene). Substrate reduction therapy, utilizing imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ), reduces ganglioside biosynthesis and levels of stored GM2 in SD mice. Intracranial(More)
Unlike ribonucleoprotein complexes that have a highly ordered overall architecture, such as the ribosome, yeast telomerase appears to be much more loosely constrained. Here, we investigate the importance of positioning of the Ku subunit within the 1157-nt yeast telomerase RNA (TLC1). Deletion of the 48-nt Ku-binding hairpin in TLC1 RNA (tlc1Δ48) reduces(More)
Addition of cholesterol to rat adrenal mitochondria resulted in a stimulation of pregnenolone synthesis. The slow step of the mitochondrial cholesterol side-chain cleavage reaction could be the interaction of the sterol with cytochrome P-450. The rate of cholesterol binding to this enzyme as observed spectroscopically correlated with the equilibration(More)
Adequate dietary iodine supplies and thyroid hormones are needed for the development of the central nervous system (CNS) and brown adipose tissue (BAT) function. Decreases in plasma thyroxine (T4) concentrations may increase the requirement for the selenoenzymes types I and II iodothyronine deiodinase (ID-I and ID-II) in the brain and ID-II in BAT to(More)
Sandhoff disease is an incurable neurodegenerative disorder caused by mutations in the lysosomal hydrolase β-hexosaminidase. Deficiency in this enzyme leads to excessive accumulation of ganglioside GM2 and its asialo derivative, GA2, in brain and visceral tissues. Small molecule inhibitors of ceramide-specific glucosyltransferase, the first committed step(More)
  • 1