Julia Seemann

Learn More
Annexin II, a member of a family of Ca2+ and membrane binding proteins, has been implicated in regulating membrane organization and membrane transport during endocytosis and Ca2+ regulated secretion. To characterize the mechanistic aspects of the annexin. II action we studied parameters which determine the endosomal association of annexin II. Immunoblot(More)
Annexin I is a member of a multigene family of Ca2+/phospholipid-binding proteins and a major substrate for the epidermal growth factor (EGF) receptor kinase, which has been implicated in membrane-related events along the endocytotic pathway, in particular in the sorting of internalized EGF receptors occurring in the multivesicular body. We analyzed in(More)
S100C is a member of the S100 family of EF-hand-type Ca(2+)-binding proteins which are thought to bind to and thereby regulate the activity of cellular target proteins in a Ca(2+)-dependent manner. An intracellular ligand for S100C is the Ca2+/phospholipid-binding protein annexin I and we show here that complex-formation is mediated through unique domains(More)
Immunofluorescence and subcellular fractionation localize annexin I and the EF hand protein S100C to the same membranous structures which in part correspond to transferrin receptor-positive endosomes. The association of S100C with endosomal membranes is strictly dependent on annexin I binding since a D91stop-S100C mutant protein, in which the residues(More)
Endogenous circadian clocks facilitate the adaptation of physiology and behavior to recurring environmental changes brought about by the Earth's rotation around its axis. Adipose tissues harbor intrinsic circadian oscillators based on interlocked transcriptional-translational feedback loops built from a set of clock genes that regulate important aspects of(More)
  • 1