Julia S. Webb

Learn More
Bacteria have developed mechanisms to communicate and compete with one another in diverse environments. A new form of intercellular communication, contact-dependent growth inhibition (CDI), was discovered recently in Escherichia coli. CDI is mediated by the CdiB/CdiA two-partner secretion (TPS) system. CdiB facilitates secretion of the CdiA 'exoprotein'(More)
Contact-dependent growth inhibition (CDI) is a phenomenon by which bacterial cell growth is regulated by direct cell-to-cell contact via the CdiA/CdiB two-partner secretion system. Characterization of mutants resistant to CDI allowed us to identify BamA (YaeT) as the outer membrane receptor for CDI and AcrB as a potential downstream target. Notably, both(More)
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiB/CdiA family of two-partner secretion proteins. CdiA effector proteins are exported onto the surface of CDI(+) inhibitor cells, where they interact with susceptible bacteria and deliver effectors/toxins derived from their C-terminal regions (CdiA-CT). CDI(+) cells also produce an(More)
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiB/CdiA family of two-partner secretion proteins. CDI systems deploy a variety of distinct toxins, which are contained within the polymorphic C-terminal region (CdiA-CT) of CdiA proteins. Several CdiA-CTs are nucleases, suggesting that the toxins are transported into the target cell(More)
Contact-dependent growth inhibition (CDI) is a mechanism identified in Escherichia coli by which bacteria expressing two-partner secretion proteins encoded by cdiA and cdiB bind to BamA in the outer membranes of target cells and inhibit their growth. A third gene in the cluster, cdiI, encodes a small protein that is necessary and sufficient to confer(More)
Clonally derived bacterial populations exhibit significant genotypic and phenotypic diversity that contribute to fitness in rapidly changing environments. Here, we show that serial passage of Salmonella enterica serovar Typhimurium LT2 (StLT2) in broth, or within a mouse host, results in selection of an evolved population that inhibits the growth of(More)
  • 1