Learn More
A new artificial regulatory system for essential genes in yeast is described. It prevents translation of target mRNAs upon tetracycline (tc) binding to aptamers introduced into their 5'UTRs. Exploiting direct RNA-ligand interaction renders auxiliary protein factors unnecessary. Therefore, our approach is strain independent and not susceptible to(More)
Splicing of pre-mRNA is a critical step in mRNA maturation and disturbances cause several genetic disorders. We apply the synthetic tetracycline (tc)-binding riboswitch to establish a gene expression system for conditional tc-dependent control of pre-mRNA splicing in yeast. Efficient regulation is obtained when the aptamer is inserted close to the 5'splice(More)
Riboswitches are genetic control elements that regulate gene expression in a small molecule-dependent way. We developed a two-stage strategy of in vitro selection followed by a genetic screen and identified several artificial small molecule-binding riboswitches that respond to the aminoglycoside neomycin. Structure-function relationships and structural(More)
BACKGROUND Adaptation to low oxygen by changing gene expression is vitally important for cell survival and tissue development. The sprouting of new blood vessels, initiated from endothelial cells, restores the oxygen supply of ischemic tissues. In contrast to the transcriptional response induced by hypoxia, which is mainly mediated by members of the HIF(More)
Riboswitches reflect a novel concept in gene regulation that is particularly suited for technological adaptation. Therefore, we characterized thermodynamically the ligand binding properties of a synthetic, tetracycline (tc)-binding RNA aptamer, which regulates gene expression in a dose-dependent manner when inserted into the untranslated region of an mRNA.(More)
While many different RNA aptamers have been identified that bind to a plethora of small molecules only very few are capable of acting as engineered riboswitches. Even for aptamers binding the same ligand large differences in their regulatory potential were observed. We address here the molecular basis for these differences by using a set of unrelated(More)
Synthetic riboswitches can serve as sophisticated genetic control devices in synthetic biology, regulating gene expression through direct RNA-ligand interactions. We analyzed a synthetic neomycin riboswitch, which folds into a stem loop structure with an internal loop important for ligand binding and regulation. It is closed by a terminal hexaloop(More)
The use of reporter gene fusions to assess cellular processes such as protein targeting and regulation of transcription or translation is established technology in archaeal, bacterial, and eukaryal genetics. Fluorescent proteins or enzymes resulting in chromogenic substrate turnover, like β -galactosidase, have been particularly useful for microscopic and(More)
The conformational dynamics induced by ligand binding to the tetracycline-binding aptamer is monitored via stopped-flow fluorescence spectroscopy and time-correlated single photon counting experiments. The fluorescence of the ligand is sensitive to changes within the tertiary structure of the aptamer during and after the binding process. In addition to the(More)
  • 1