Learn More
AIMS We explored the use of highly purified murine and human pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) to generate functional bioartificial cardiac tissue (BCT) and investigated the role of fibroblasts, ascorbic acid (AA), and mechanical stimuli on tissue formation, maturation, and functionality. METHODS AND RESULTS Murine and human(More)
Despite recent major advances including reprogramming and directed cardiac differentiation of human cells, therapeutic application of in vitro engineered myocardial tissue is still not feasible due to the inability to construct functional large vascularized contractile tissue patches based on clinically applicable and fully defined matrix components.(More)
Regulated transgene expression may reduce transgene-specific and genotoxic risks associated with gene therapy. To prove this concept, we have investigated the suitability of doxycycline (Dox)-inducible human cytidine deaminase (hCDD) overexpression from lentiviral vectors to mediate effective myeloprotection while circumventing the lymphotoxicity observed(More)
Stem cell-based cardiac tissue engineering is a promising approach for regenerative therapy of the injured heart. At present, the small number of stem cell-derived cardiomyocytes that can be obtained using current culture and enrichment techniques represents one of the key limitations for the development of functional bioartificial cardiac tissue (BCT). We(More)
In most pluripotent stem cell differentiation protocols the formation of embryoid bodies (EBs) is an important step. Here we describe a rapid, straightforward soft lithography approach for the preparation of hydrophilic silicon masters from different templates and the subsequent production of patterned agarose-DMEM microwell surfaces for scalable well(More)
Successful application of gene therapy strategies may require stringently regulated transgene expression. Along this line, we describe a doxycycline (Dox)-inducible 'all-in-one' lentiviral vector design using the pTET-T11 (TII) minimal-promoter and a reverse transactivator protein (rtTA2S-M2) driven by the phosphoglycerate kinase promoter allowing for tight(More)