Learn More
Aerial plant surfaces represent the largest biological interface on Earth and provide essential services as sites of carbon dioxide fixation, molecular oxygen release, and primary biomass production. Rather than existing as axenic organisms, plants are colonized by microorganisms that affect both their health and growth. To gain insight into the physiology(More)
Our knowledge of the microbiology of the phyllosphere, or the aerial parts of plants, has historically lagged behind our knowledge of the microbiology of the rhizosphere, or the below-ground habitat of plants, particularly with respect to fundamental questions such as which microorganisms are present and what they do there. In recent years, however, this(More)
The above- and below-ground parts of rice plants create specific habitats for various microorganisms. In this study, we characterized the phyllosphere and rhizosphere microbiota of rice cultivars using a metaproteogenomic approach to get insight into the physiology of the bacteria and archaea that live in association with rice. The metaproteomic datasets(More)
Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the(More)
Methanogenic and sulfate-reducing Archaea are considered to have an energy metabolism involving C1 transfer coenzymes and enzymes unique for this group of strictly anaerobic microorganisms. An aerobic methylotrophic bacterium, Methylobacterium extorquens AM1, was found to contain a cluster of genes that are predicted to encode some of these enzymes and was(More)
Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community(More)
Methylotrophic bacteria can grow on a number of substrates as energy source with only one carbon atom, such as methanol, methane, methylamine, and dichloromethane. These compounds are metabolized via the cytotoxin formaldehyde. The formaldehyde consumption pathways, especially the pathways for the oxidation of formaldehyde to CO(2) for energy metabolism,(More)
Facultative methylotrophic bacteria of the genus Methylobacterium are commonly found in association with plants. Inoculation experiments were performed to study the importance of methylotrophic metabolism for colonization of the model legume Medicago truncatula. Competition experiments with Methylobacterium extorquens wild-type strain AM1 and methylotrophy(More)
An NADP-dependent methylene tetrahydromethanopterin (H4MPT) dehydrogenase has recently been proposed to be involved in formaldehyde oxidation to CO2 in Methylobacterium extorquens AM1. We report here on the purification of this novel enzyme to apparent homogeneity. Via the N-terminal amino acid sequence, it was identified to be the mtdA gene product. The(More)
Methanogenesis and methane oxidation are the major biological processes affecting the global cycling of the powerful greenhouse gas methane. To carry out the two alternative bioconversions, Nature has cleverly recycled key reactions for the C1 transfers between the oxidation levels of formaldehyde and formate, and these involve analogous enzyme systems and(More)