Learn More
Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the(More)
Facultative methylotrophic bacteria of the genus Methylobacterium are commonly found in association with plants. Inoculation experiments were performed to study the importance of methylotrophic metabolism for colonization of the model legume Medicago truncatula. Competition experiments with Methylobacterium extorquens wild-type strain AM1 and methylotrophy(More)
Methanogenic and sulfate-reducing Archaea are considered to have an energy metabolism involving C1 transfer coenzymes and enzymes unique for this group of strictly anaerobic microorganisms. An aerobic methylotrophic bacterium, Methylobacterium extorquens AM1, was found to contain a cluster of genes that are predicted to encode some of these enzymes and was(More)
BACKGROUND Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4,(More)
  • Yang Bai, Daniel B. Müller, Girish Srinivas, Ruben Garrido-Oter, Eva Potthoff, Matthias Rott +8 others
  • 2015
Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community(More)
BACKGROUND Methylotrophic microorganisms are playing a key role in biogeochemical processes - especially the global carbon cycle - and have gained interest for biotechnological purposes. Significant progress was made in the recent years in the biochemistry, genetics, genomics, and physiology of methylotrophic bacteria, showing that methylotrophy is much(More)
The identity of plant host genetic factors controlling the composition of the plant microbiota and the extent to which plant genes affect associated microbial populations is currently unknown. Here, we use a candidate gene approach to investigate host effects on the phyllosphere community composition and abundance. To reduce the environmental factors that(More)
Using methanol as an alternative non-food feedstock for biotechnological production offers several advantages in line with a methanol-based bioeconomy. The Gram-positive, facultative methylotrophic and thermophilic bacterium Bacillus methanolicus is one of the few described microbial candidates with a potential for the conversion of methanol to value-added(More)
Bacillus methanolicus can utilize methanol as the sole carbon source for growth and it encodes an NAD(+)-dependent methanol dehydrogenase (Mdh), catalyzing the oxidation of methanol to formaldehyde. Recently, the genomes of the B. methanolicus strains MGA3 (ATCC53907) and PB1 (NCIMB13113) were sequenced and found to harbor three different putative Mdh(More)
The methylotrophic proteobacterium Methylobacterium extorquens AM1 possesses tetrahydromethanopterin (H(4)MPT)-dependent enzymes, which are otherwise specific to methanogenic and sulfate-reducing archaea and which have been suggested to be involved in formaldehyde oxidation to CO(2) in M. extorquens AM1. The distribution of H(4)MPT-dependent enzyme(More)