Learn More
BACKGROUND The Drosophila wing represents a particularly appropriate model to investigate the developmental control of phenotypic variation. Previous studies which aimed to identify candidate genes for wing morphology demonstrated that the genetic basis of wing shape variation in D. melanogaster is composed of numerous genetic factors causing small,(More)
BACKGROUND Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit(More)
The genetic and ecological basis of viability and developmental time differences between Drosophila buzzatii and D. koepferae were analysed using the isofemale line technique. Several isofemale lines were sampled from pairs of allopatric/sympatric populations of each species. Flies were reared in media prepared with decaying tissues of two of the main(More)
Different hypotheses attempt to explain how different stages of organisms with complex life cycles respond to environmental changes. Most studies have focused at the among-species level showing similar responses to temperature throughout ontogeny. However, there is no agreement about the pattern expected at the intraspecific scale where a strong selective(More)
Developmental conservation among related species is a common generalization known as von Baer's third law and implies that early stages of development are the most refractory to change. The "hourglass model" is an alternative view that proposes that middle stages are the most constrained during development. To investigate this issue, we undertook a genomic(More)
BACKGROUND Previously, we have shown there is clinal variation for egg-to-adult developmental time along geographic gradients in Drosophila melanogaster. Further, we also have identified mutations in genes involved in metabolic and neurogenic pathways that affect development time (heterochronic genes). However, we do not know whether these loci affect(More)
Understanding the genetic architecture of any quantitative trait requires identifying the genes involved in its expression in different environmental conditions. This goal can be achieved by mutagenesis screens in genetically tractable model organisms such as Drosophila melanogaster. Temperature during ontogenesis is an important environmental factor(More)
In nature, behavioural and physiological processes involved in mating may entail different costs and benefits for males and females. However, it has been hypothesized that sexual interactions may have additional costs for Drosophila females like decrease in receptivity to remating and shortening of lifespan. During mating, males transfer seminal fluid(More)
Under the preference-performance hypothesis, natural selection will favor females that choose oviposition sites that optimize the fitness of their offspring. Such a preference-performance relationship may entail important consequences mainly on fitness-related traits. We used the well-characterized cactus-Drosophila system to investigate the reproductive(More)
Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such(More)
  • 1