Jules John VanDersarl

Learn More
Nanomaterials are promising candidates to improve the delivery efficiency and control of active agents such as DNA or drugs directly into cells. Here we demonstrate cell-culture platforms of nanotemplated "nanostraws" that pierce the cell membrane, providing a permanent fluidic pipeline into the cell for direct cytosolic access. Conventional polymeric(More)
We present a microfluidic platform for the synthesis of monodisperse chitosan based nanoparticles via self-assembly at physiological pH. The resultant nanoparticles are shown to encapsulate hydrophobic anticancer drugs while providing a sustainable release profile with high tunability.
Here, we demonstrate a new approach for the synthesis of ion exchange microfibers with finely tuned anhydrous conductivity. This work presents microfluidics as a system to control the size and phosphoric acid (PA) doping level of the polybenzimidazole (PBI) microfibers. It has been shown that the PA doping level can be controlled by varying the flow ratios(More)
At nanoscale length scales, the properties of particles change rapidly with the slightest change in dimension. The use of a microfluidic platform enables precise control of sub-100 nm organic nanoparticles (NPs) based on polybenzimidazole. Using hydrodynamic flow focusing, we can control the size and shape of the NPs, which in turn controls a number of(More)
Polyelectrolyte-coated magnetic nanoparticles were prepared by decorating the surface of superparamagnetic iron oxide nanoparticles (SPIONs) with crosslinked chitosan oligopolysaccharide (CS). These positively charged particles (CS-SPIONs) were then added to a negatively charged polymer (Nafion), and cast into membranes under an applied magnetic field. TEM(More)
Clathrin is a three-legged protein complex that assembles into lattice structures on the cell membrane and transforms into fullerene-like cages during endocytosis. This dynamic structural flexibility makes clathrin an attractive building block for guided assembly. The assembly dynamics and the mechanical properties of clathrin protein lattices are studied(More)
A microfluidics approach to synthesize core-shell nanocarriers with high pH tunability is described. The sacrificial shell protects the core layer with the drugs and prevents their release in the severe pH conditions of the gastrointestinal tract, while allowing for drug release in the proximity of a tumor. The proposed nanoparticulate drug-delivery system(More)
Here we present a planar patch clamp chip based on biomimetic cell membrane fusion. This architecture uses nanometer length-scale surface patterning to replicate the structure and function of membrane proteins, creating a gigaohm seal between the cell and a planar electrode array. The seal is generated passively during cell spreading, without the(More)
Controlled chemical delivery in microfluidic cell culture devices often relies on slowly evolving diffusive gradients, as the spatial and temporal control provided by fluid flow results in significant cell-perturbation. In this paper we introduce a microfluidic device architecture that allows for rapid spatial and temporal soluble signal delivery over large(More)
  • 1