Jukka-Pekka Verta

Learn More
Conifers have very large genomes (13 to 30 Gigabases) that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. An oligonucleotide(More)
Genetic variation in gene expression traits contributes to phenotypic diversity and may facilitate adaptation following environmental change. This is especially important in long-lived organisms where adaptation to rapid changes in the environment must rely on standing variation within populations. However, the extent of expression variation in most wild(More)
Hybridization is recognized as a powerful mechanism of speciation and a driving force in generating biodiversity. However, only few multicellular species, limited to a handful of plants and animals, have been shown to fulfil all the criteria of homoploid hybrid speciation. This lack of evidence could lead to the interpretation that speciation by(More)
Conifers have been understudied at the genomic level despite their worldwide ecological and economic importance but the situation is rapidly changing with the development of next generation sequencing (NGS) technologies. With NGS, genomics research has simultaneously gained in speed, magnitude and scope. In just a few years, genomes of 20-24 gigabases have(More)
Background Genetic variation can cause changes in gene expression (mRNA abundance) among individuals. This so-called heritable variation in gene expression is affected by genetic variants that are co-segregating with the gene locus (local/cis effects) and/or segregating independently from it (distant/trans effects). Genetic variation in gene expression can(More)
Regulation of gene expression plays a central role in translating genotypic variation into phenotypic variation. Dissection of the genetic basis of expression variation is key to understanding how expression regulation evolves. Such analyses remain challenging in contexts where organisms are outbreeding, highly heterozygous and long-lived such as in the(More)
Affiliations: Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, 1030 avenue de la Médecine Université Laval Québec (QC) G1V 0A6, Canada Current affiliation: Département des Sciences Biologiques, Pavillon Marie-Victorin, 90 rue Vincent d’Indy – Université de Montréal – Montréal (QC) H2V 2S9,(More)
  • 1