Juilson Jubanski

Learn More
Tropical peat swamp forests in Indonesia store huge amounts of carbon and are responsible for enormous carbon emissions every year due to forest degradation and deforestation. These forest areas are in the focus of REDD+ (reducing emissions from deforestation, forest degradation, and the role of conservation, sustainable management of forests and(More)
Quantification of tropical forest above-ground biomass (AGB) over large areas as input for Reduced Emissions from Deforestation and forest Degradation (REDD+) projects and climate change models is challenging. This is the first study which attempts to estimate AGB and its variability across large areas of tropical lowland forests in Central Kalimantan(More)
Indonesian peatlands are one of the largest near-surface pools of terrestrial organic carbon. Persistent logging, drainage and recurrent fires lead to huge emission of carbon each year. Since tropical peatlands are highly inaccessible, few measurements on peat depth and forest biomass are available. We assessed the applicability of quality filtered(More)
Tropical peatland fires play a significant role in the context of global warming through emissions of substantial amounts of greenhouse gases. However, the state of knowledge on carbon loss from these fires is still poorly developed with few studies reporting the associated mass of peat consumed. Furthermore, spatial and temporal variations in burn depth(More)
We estimated forest Above Ground Biomass (AGB) of tropical peat swamp forests in the Indonesian province of Central Kalimantan through correlating airborne Light Detection And Ranging (LiDAR) data to forest inventory data. Two LiDAR point cloud metrics, the Quadratic Mean Canopy profile Height (QMCH) and the Centroid Height (CH), were correlated to the(More)
  • 1