Learn More
Stochastic hill climbing algorithm is adapted to rapidly find the appropriate start node in the application mapping of network-based many-core systems. Due to highly dynamic and unpredictable workload of such systems, an agile run-time task allocation scheme is required. The scheme is desired to map the tasks of an incoming application at run-time onto an(More)
We propose link structures for NoC that have properties for tolerating efficiently transient, intermittent, and permanent errors. This is a necessary step to be taken in order to implement reliable systems in future nanoscale technologies. The protection against transient errors is realized using Hamming coding and interleaving for error detection and(More)
High energy consumption of cloud data centers is a matter of great concern. Dynamic consolidation of Virtual Machines (VMs) presents a significant opportunity to save energy in data centers. A VM consolidation approach uses live migration of VMs so that some of the under-loaded Physical Machines (PMs) can be switched-off or put into a low-power mode. On the(More)
Combining the benefits of 3D ICs and Networks-on-Chip (NoCs) schemes provides a significant performance gain in Chip Multiprocessors (CMPs) architectures. As multicast communication is commonly used in cache coherence protocols for CMPs and in various parallel applications, the performance of these systems can be significantly improved if multicast(More)
We present a self-contained adaptive system for detecting and bypassing permanent errors in on-chip interconnects. The proposed system reroutes data on erroneous links to a set of spare wires without interrupting the data flow. To detect permanent errors at runtime, a novel in-line test (ILT) method using spare wires and a test pattern generator is(More)
Three-dimensional IC technology offers greater device integration and shorter interlayer interconnects. In order to take advantage of these attributes, 3D stacked mesh architecture was proposed which is a hybrid between packet-switched network and a bus. Stacked mesh is a feasible architecture which provides both performance and area benefits, while(More)
Increasing the number of processors in a single chip toward network-based many-core systems requires a run-time task allocation algorithm. We propose an efficient mapping algorithm that assigns communicating tasks of incoming applications onto resources of a many-core system utilizing Network-on-Chip paradigm. In our contiguous neighborhood allocation(More)
While Networks-on-Chip have been increasing in popularity with industry and academia, it is threatened by the decreasing reliability of aggressively scaled transistors. This level of failure has architectural level ramifications, as it may cause an entire on-chip network to fail. Traditional fault-tolerant routing algorithms can overcome the faulty links or(More)
Congestion-aware routing algorithms can improve network throughput by avoiding packets to be routed through congested areas. In this paper, we propose a minimal/non-minimal routing algorithm to alleviate congestion in the network by making use of all available paths between sources and destinations. The simplicity of the proposed algorithm provides a cost(More)
The occurrence of congestion in on-chip networks can severely degrade the performance due to increased message latency. In mesh topology, minimal methods can propagate messages over two directions at each switch. When shortest paths are congested, sending more messages through them can deteriorate the congestion condition considerably. In this paper, we(More)