Juha Leppäkangas

Learn More
The field of metamaterial research revolves around the idea of creating artificial media that interact with light in a way unknown from naturally occurring materials. This is commonly achieved using sub-wavelength lattices of electronic or plasmonic structures, so-called meta-atoms. One of the ultimate goals for these tailored media is the ability to(More)
We investigate electromagnetic radiation emitted by a small voltage-biased Josephson junction connected to a superconducting transmission line. At frequencies below the well-known emission peak at the Josephson frequency (2eV/h), extra radiation is triggered by quantum fluctuations in the transmission line. For weak tunneling couplings and typical Ohmic(More)
We demonstrate theoretically that charge transport across a Josephson junction, voltage-biased through a resistive environment, produces antibunched photons. We develop a continuous-mode description of the emitted radiation field in a semi-infinite transmission line terminated by the Josephson junction. Within a perturbative treatment in powers of the(More)
We study correlated transport in a Josephson junction array for small Josephson energies. In this regime transport is dominated by Cooper-pair hopping, although we observe that quasiparticles can not be neglected. We assume that the energy dissipated by a Cooper-pair is absorbed by the intrinsic impedance of the array. This allows us to formulate explicit(More)
We study theoretically electromagnetic radiation emitted by inelastic Cooper-pair tunneling. We consider a dc-voltage-biased superconducting transmission line terminated by a Josephson junction. We show that the generated continuous-mode electromagnetic field can be expressed as a function of the time-dependent current across the Josephson junction. The(More)
We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For(More)
  • 1