Jugal Kishore Sahoo

Learn More
The aim of the present study was to enhance the dissolution rate of gliclazide using its solid dispersions (SDs) with polyethylene glycol (PEG) 6000. The phase solubility behavior of gliclazide in presence of various concentrations of PEG 6000 in 0.1 N HCl was obtained at 37 °C. The solubility of gliclazide increased with increasing amount of PEG 6000 in(More)
Since the advent of deep learning, it has been used to solve various problems using many different architectures. The application of such deep architectures to auditory data is also not uncommon. However, these architectures do not always adequately consider the temporal dependencies in data. We thus propose a new generic architecture called the Deep Belief(More)
Gliclazide is a second generation hypoglycemic sulfonylurea which is useful in the treatment of type 2 diabetes mellitus (1). Following oral administration, however, gliclazide exhibits slow rate of absorption and interindividual variation in bioavailability. Stated problems of gliclazide might be due to its poor water solubility and slow dissolution rate(More)
The release of propranolol hydrochloride from matrix tablets with hydroxy propyl methyl cellulose (HPMC K15M) or Kollidon®SR at different concentrations was investigated with a view to developing twice daily sustained release dosage form. A hydrophilic matrix-based tablet using different concentrations of HPMC K15M or Kollidon®SR was developed using direct(More)
The release of verapamil hydrochloride from tablets with Eudragit RLPO or Kollidon®SR with different drug-to-polymer ratios were investigated with a view to develop twice-daily sustained-release dosage form by solid dispersion (SD) technique. The SDs containing Eudragit RLPO or Kollidon®SR at drug-polymer ratios of 1:1, 1:2, and 1:3 with verapamil(More)
Out of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers(More)
We describe the reconstitution of apo-horse radish peroxidase (apo-HRP) onto TiO(2) nanorods functionalized with a multifunctional polymer. After functionalization, the horse radish peroxidase (HRP) functionalized TiO(2) nanorods were well dispersible in aqueous solution, catalytically active and biocompatible, and they could be used to quantify and image(More)
We report on a supramolecular self-assembly system that displays coupled light switching, biocatalytic condensation/hydrolysis and gelation. The equilibrium state of this system can be regulated by light, favouring in situ formation, by protease catalysed peptide synthesis, of self-assembling trans- in ambient light; however, irradiation with UV light gives(More)
Supramolecular chemistry enables the creation of a diversity of nanostructures and materials. Many of these have been explored for applications as biomaterials and therapeutics. Among them, self-assembling peptides have been broadly applied. The structural diversity afforded from the library of amino acid building blocks has enabled control of emergent(More)
In this paper, we propose a generic technique to model temporal dependencies and sequences using a combination of a recurrent neural network and a Deep Belief Network. Our technique, RNN-DBN, is an amalgamation of the memory state of the RNN that allows it to provide temporal information and a multi-layer DBN that helps in high level representation of the(More)