Learn More
To systematically identify and analyze the 15 HA and 9 NA subtypes of influenza A virus, we need reliable, simple methods that not only characterize partial sequences but analyze the entire influenza A genome. We designed primers based on the fact that the 15 and 21 terminal segment specific nucleotides of the genomic viral RNA are conserved between all(More)
Genetic analysis of the M2 sequence of European porcine influenza A viruses reveals a high prevalence of amantadine resistance due to the substitution of serine 31 by asparagine in all three circulating subtypes, H1N1, H3N2 and H1N2. The M segment of all resistant strains belongs to a single genetic lineage. Whereas the first amantadine-resistant porcine(More)
Mammalian influenza viruses are descendants of avian strains that crossed the species barrier and underwent further adaptation. Since 1997 in southeast Asia, H5N1 highly pathogenic avian influenza viruses have been causing severe, even fatal disease in humans. Although no lineages of this subtype have been established until now, such repeated events may(More)
Non-structural protein NS1 of influenza A virus counteracts the host immune response by blocking the synthesis of type I interferon (IFN). As deletion of the complete NS1 gene has to date been reported only in the human H1N1 strain A/PR/8/34, it remained unclear whether NS1 is a non-essential virulence factor in other influenza A virus strains as well. In(More)
Influenza infection is initiated by virus attachment to sialic acid-containing cell-surface receptors. The spectrum of sialylglycoconjugates varies substantially between viral host species as well as target tissues and cell types of the same species, leading to variations in the receptor-binding specificity of viruses circulating in these hosts. Therefore,(More)
A promising approach to reduce the impact of influenza is the use of an attenuated, live virus as a vaccine. Using reverse genetics, we generated a mutant of strain A/WSN/33 with a modified cleavage site within its hemagglutinin, which depends on proteolytic activation by elastase. Unlike the wild-type, which requires trypsin, this mutant is strictly(More)
The most effective countermeasure against a pandemic originating from a highly pathogenic avian influenza virus (HPAIV) is immunoprophylaxis of the human population. We present here a new approach for the development of a pandemic HPAIV live vaccine. Using reverse genetics, we replaced the polybasic hemagglutinin cleavage site of an H7N7 HPAIV with an(More)
This work presents ongoing efforts and preliminary results for building a dataset that represents the first and most comprehensive bio-optical information available on Brazilian inland waters to support the development of remote sensing algorithms for monitoring aquatic systems. From 2012 to 2014 optical and limnological data was gathered along thirteen(More)
In 1997, an H5N1 influenza virus outbreak occurred in chickens in Hong Kong, and the virus was transmitted directly to humans. Because there is limited information about the avian influenza virus reservoir in that region, we genetically characterized virus strains isolated in Hong Kong during the 1997 outbreak. We sequenced the gene segments of a(More)
H5N1 highly pathogenic avian influenza viruses (HPAIV) of clade 2.2 spread from Southeast Asia to Europe. Intriguingly, in contrast to all common avian strains specifying glutamic acid at position 627 of the PB2 protein (PB2-627E), they carry a lysine at this position (PB2-627K), which is normally found only in human strains. To analyze the impact of this(More)