Learn More
Gene mutations and epigenetic changes have been shown to play significant roles in the pathogenesis of myelodysplastic syndromes. Recently, mutations in DNMT3A were identified in 22.1% of patients with acute myeloid leukemia. In this study, we analyzed the frequency and clinical impact of DNMT3A mutations in a cohort of 193 patients with myelodysplastic(More)
To assess the frequency of TP53 alterations and their correlation with other genetic changes and outcome in acute myeloid leukemia with complex karyotype (CK-AML), we performed integrative analysis using TP53 mutational screening and array-based genomic profiling in 234 CK-AMLs. TP53 mutations were found in 141 of 234 (60%) and TP53 losses were identified(More)
Mutations in the nicotinamide adenine dinucleotide phosphate(+)-dependent isocitrate dehydrogenase gene 2 (IDH2) have recently been found in patients with acute myeloid leukemia (AML) as well as in patients with leukemic transformation of myeloproliferative neoplasms. We analyzed 272 adult patients with cytogenetically normal AML (CN-AML) for the presence(More)
Mutations in genes of the splicing machinery have been described recently in myelodysplastic syndromes (MDS). In the present study, we examined a cohort of 193 MDS patients for mutations in SRSF2, U2AF1 (synonym U2AF35), ZRSR2, and, as described previously, SF3B1, in the context of other molecular markers, including mutations in ASXL1, RUNX1, NRAS, TP53,(More)
BACKGROUND The fusion protein RUNX1-CBFA2T1 associated with t(8;21)-positive acute myeloid leukaemia is a potent inhibitor of haematopoetic differentiation. The role of RUNX1-CBFA2T1 in leukaemic cell proliferation is less clear. We examined the consequences of siRNA-mediated RUNX1-CBFA2T1 depletion regarding proliferation and clonogenicity of(More)
The translocation t(12;22) involves MN1 and TEL and is rarely found in acute myeloid leukemia (AML). Recently, it has been shown in a mouse model that the fusion protein MN1-TEL can promote growth of primitive hematopoietic progenitor cells (HPCs) and, in cooperation with HOXA9, induce AML. We quantified MN1 expression by real-time reverse(More)
BACKGROUND AND OBJECTIVES From 20-50% of patients with acute myeloid leukemia (AML) are primarily resistant to induction chemotherapy. It has previously been shown that resistance to the first cycle of induction chemotherapy is an independent prognostic factor. We investigated whether resistance to chemotherapy be represented by gene-expression profiles,(More)
Neurotrophins (NTs) and their receptors play a key role in neurogenesis and survival. The TRK (tropomyosin-related kinase) receptor protein tyrosine kinases (TRKA, TRKB, TRKC) are high-affinity NT receptors that are expressed in a variety of human tissues. Their role in normal and malignant hematopoiesis is poorly understood. In a prospective study(More)
To study the characteristics and clinical impact of therapy-related acute myeloid leukemia (t-AML). 200 patients (7.0%) had t-AML and 2653 de novo AML (93%). Patients with t-AML were older (P < .0001) and they had lower white blood counts (P = .003) compared with de novo AML patients; t-AML patients had abnormal cytogenetics more frequently, with(More)
Core binding factor (CBF) leukemias, characterized by either inv(16)/t(16;16) or t(8;21), constitute acute myeloid leukemia (AML) subgroups with favorable prognosis. However, there exists substantial biologic and clinical heterogeneity within these cytogenetic groups that is not fully reflected by the current classification system. To improve the molecular(More)