Learn More
We present a method for the detection of instances of an object class, such as cars or pedestrians, in natural images. Similarly to some previous works, this is accomplished via generalized Hough transform, where the detections of individual object parts cast probabilistic votes for possible locations of the centroid of the whole object; the detection(More)
Fast and reliable algorithms for estimating the head pose are essential for many applications and higher-level face analysis tasks. We address the problem of head pose estimation from depth data, which can be captured using the ever more affordable 3D sensing technologies available today. To achieve robustness, we formulate pose estimation as a regression(More)
Although facial feature detection from 2D images is a well-studied field, there is a lack of real-time methods that estimate feature points even on low quality images. Here we propose conditional regression forest for this task. While regression forest learn the relations between facial image patches and the location of feature points from the entire set of(More)
Although action recognition in videos is widely studied, current methods often fail on real-world datasets. Many recent approaches improve accuracy and robustness to cope with challenging video sequences, but it is often unclear what affects the results most. This paper attempts to provide insights based on a systematic performance evaluation using(More)
The paper introduces Hough forests, which are random forests adapted to perform a generalized Hough transform in an efficient way. Compared to previous Hough-based systems such as implicit shape models, Hough forests improve the performance of the generalized Hough transform for object detection on a categorical level. At the same time, their flexibility(More)
We present a system for estimating location and orientation of a person’s head, from depth data acquired by a low quality device. Our approach is based on discriminative random regression forests: ensembles of random trees trained by splitting each node so as to simultaneously reduce the entropy of the class labels distribution and the variance of the head(More)
We present a random forest-based framework for real time head pose estimation from depth images and extend it to localize a set of facial features in 3D. Our algorithm takes a voting approach, where each patch extracted from the depth image can directly cast a vote for the head pose or each of the facial features. Our system proves capable of handling large(More)
This paper proposes a method for capturing the performance of a human or an animal from a multi-view video sequence. Given an articulated template model and silhouettes from a multi-view image sequence, our approach recovers not only the movement of the skeleton, but also the possibly non-rigid temporal deformation of the 3D surface. While large scale(More)
We present a method to classify and localize human actions in video using a Hough transform voting framework. Random trees are trained to learn a mapping between densely-sampled feature patches and their corresponding votes in a spatio-temporal-action Hough space. The leaves of the trees form a discriminative multi-class codebook that share features between(More)
Introduction The earliest works in action recognition focused on tracking body parts and classifying the joint movements. These pose-based approaches, while straight-forward, require accurate tracking of body parts, which is a challenging task in its own right. As recent trends in action recognition have shifted towards natural and unconstrained videos(More)