Learn More
Recent nanomechanical tests on submicron metal columns and wires have revealed a dramatic increase in yield strength with decreasing sample size. Here, we demonstrate that nanoporous metal foams can be envisioned as a three-dimensional network of ultrahigh-strength nanowires, thus bringing together two seemingly conflicting properties: high strength and(More)
The plastic deformation of nanoporous Au under compressive stress was studied by depth-sensing nanoindentation combined with scanning electron microscope characterization. The nanoporous Au investigated in the current study exhibits a relative density of 42%, and a spongelike morphology of interconnecting ligaments on a length scale of ϳ100 nm. The material(More)
The Au-S interaction is probably the most intensively studied interaction of Au surfaces with nonmetals, as, for example, it plays an important role in Au ore formation(1) and controls the structure and dynamics of thiol-based self-assembled monolayers (SAMs). Various S-induced surface structures on Au(111) were recently reported for different conditions(More)
We report the synthesis of ultra-low-density three-dimensional macroassemblies of graphene sheets that exhibit high electrical conductivities and large internal surface areas. These materials are prepared as monolithic solids from suspensions of single-layer graphene oxide in which organic sol-gel chemistry is used to cross-link the individual sheets. The(More)
Gold (Au) is an interesting catalytic material because of its ability to catalyze reactions, such as partial oxidations, with high selectivities at low temperatures; but limitations arise from the low O2 dissociation probability on Au. This problem can be overcome by using Au nanoparticles supported on suitable oxides which, however, are prone to sintering.(More)
Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry-driven actuation can be realized in high-surface-area materials such as nanoporous gold. For example, we(More)
Using atomic layer deposition (ALD), we show that Pt nanoparticles can be deposited on the inner surfaces of carbon aerogels (CA). The resultant Pt-loaded materials exhibit high catalytic activity for the oxidation of CO even at loading levels as low as approximately 0.05 mg Pt/cm2. We observe a conversion efficiency of nearly 100% in the 150-250 degrees C(More)
Nanostructured materials are governed by their surface chemical properties. This is strikingly reflected by np-Au. This material can be generated by corrosion of bulk Ag-Au alloys. Based on a self-organisation process, a 3 dimensional sponge like gold structure evolves with ligaments in the range of only a few tens of nanometers. Due to its continuous(More)