Learn More
1. Receptive-field properties of 214 neurons from cat striate cortex were studied with particular emphasis on: a) classification, b) field size, c) orientation selectivity, d) direction selectivity, e) speed selectivity, and f) ocular dominance. We studied receptive fields located throughtout the visual field, including the monocular segment, to determine(More)
Four physiologically identified neurons in the A laminae of the cat's dorsal lateral geniculate nucleus were filled with horseradish peroxidase and studied using the electron microscope. Two were X-cells and two were Y-cells. Each had electrophysiological properties appropriate for its X- Or Y-cell class, and each also had an axon that projected into the(More)
Pathways between the dorsal lateral geniculate nucleus (dLGN) and visual cortex in Old World (Macaca, Papio, Erythrocebus, Cercopithecus) and New World (Saimiri, Cebus) primates were studied after injections of horseradish peroxidase and H3 or S35 amino acids into the dLGN or visual cortex. Trans-synaptic autoradiography was also used to study these(More)
The histaminergic system is involved in the control of arousal in the brain and may impact significantly on visual processing. However, little is known about the histaminergic innervation of visual areas, or the histamine system in the primate brain, in general. We examined in Macaca mulatta the location of histamine-immunoreactive neurons and the(More)
  • J R Wilson
  • 1989
Parvocellular and magnocellular neurons in the dorsal lateral geniculate nucleus of macaque monkeys were recorded electrophysiologically and then injected with HRP. The injected neurons were examined with the electron microscope. Synaptic terminals contacting the dendrites of individual neurons were classified and the synapses counted to estimate the number(More)
BACKGROUND The dorsal lateral geniculate nucleus (dLGN) is the thalamic region responsible for transmitting retina signals to cortex. Brainstem pathways to this nucleus have been described in several species and are believed to control the retinocortical pathway depending on the state of the animal (awake, asleep, drowsy, etc.). The purpose of this study(More)
The cholinergic and histaminergic projections have important neuromodulatory functions in the ascending visual pathways, so we compared the pattern and mode of innervation of the two projections in the lateral geniculate complex (dorsal lateral geniculate nucleus and pregeniculate nucleus) of the macaque monkey. Brain tissue from macaques was immunoreacted(More)