Judy I-Chia Wu

Learn More
Aromaticity, a highly stabilizing feature of molecules with delocalized electrons in closed circuits, is generally restricted to 'Hückel' systems with 4n+2 mobile electrons. Although the Möbius concept extends the principle of aromaticity to 4n mobile electron species, the rare known examples have complex, twisted topologies whose extension is unlikely.(More)
Computed aromatic stabilization energies (ASEs) and dissected nucleus independent chemical shifts (NICSπzz) quantify the effect of hyperconjugation on the (anti)aromaticities of the planar conformations of three, five, seven, and nine membered (CnHn)CR2 (R = H, SiH3, F) rings. CH2 and especially C(SiH3)2 groups supply two "pseudo" π electrons(More)
Despite having 4n pi electrons, dihydrodiazapentacenes are more viable than their 4n+2 pi azapentacene counterparts. Ab inito valence bond block-localized wave function (BLW) computations reveal that despite having 4n pi electrons, dihydrodiazapentacenes are stabilized and benefit substantially from four dihydropyrazine ethenamine (enamine) conjugations.(More)
The geometries of a series of [n](2,7)pyrenophanes (n = 6-12) were optimized at the B3LYP/6-311G** DFT level. The X-ray crystal structures determined for the [9](2,7)- and [10](2,7)pyrenophanes agreed excellently with the computed structures. The degree of nonplanarity of the pyrene moiety depends on the number of CH2 groups in the aliphatic bridge and, as(More)
The synthesis and X-ray characterization of two new dialkynylated diazatetracenes and the corresponding N, N-dihydrodiazatetracenes are reported. The dialkynylated heteroacenes are packed in a brick-wall motif that enforces significant overlap of their pi-faces. Cyclic voltammetry indicates that the dehydrogenated forms are easily reduced to their radical(More)
Computed association energies and dissected nucleus-independent chemical shifts (NICS) document the mutual enhancement (or reduction) of intermolecular interactions and the aromaticity of H-bonded substrates. H-bonding interactions that increase cyclic 4n + 2 π-electron delocalization boost aromaticity. Conversely, such interactions are weakened when(More)
A theoretical study of the geometries, energies, dissociation pathways, and aromaticity of the isomeric sulfur-nitrogen S(2)N(3)(+) rings reveals that the experimentally known 1,2-isomer is only stable kinetically. A rather high barrier inhibits its dissociation into the slightly lower energy N(2) and NSS(+) fragments via a stepwise mechanism. A second(More)
Despite its highly nonplanar geometry, the tub-shaped D2d cyclooctatetraene (COT) minimum is far from being an unconjugated polyene model devoid of important π interactions. The warped skeleton of D2d COT results in the large stabilization (41.1 kcal/mol) revealed by its isodesmic bond separation energy (BSE). This originates largely from the "two-way"(More)
Quantitative evaluations of the aromaticity (antiaromaticity) of neutral exocyclic substituted cyclopropenes (HC)(2)C=X (X = BH to InH (group 13), CH(2) to SnH(2) (group 14), NH to SbH (group 15), O to Te (group 16)) by their computed extra cyclic resonance energies (ECRE, via the block-localized wave function method) and by their aromatic stabilization(More)
The first example of a dyotropic rearrangement of an enantiomerically pure, conformationally unconstrained, vicinal dibromide confirms theoretical predictions: D and L-1,2-dibromo-1,2-diphenylethane racemise stereospecifically in refluxing benzene without crossover to the meso-isomer. An orbital analysis of this six-electron pericyclic process is presented.