Learn More
Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and(More)
Respiratory complex II (succinate:ubiquinone oxidoreductase) connects the tricarboxylic acid cycle to the electron transport chain in mitochondria and many prokaryotes. Complex II mutations have been linked to neurodegenerative diseases and metabolic defects in cancer. However, there is no convenient stoichiometric assay for the catalytic activity of(More)
Respiratory complex I (NADH:quinone oxidoreductase) is an entry point to the electron transport chain in the mitochondria of many eukaryotes. It is a large, multisubunit enzyme with a hydrophilic domain in the matrix and a hydrophobic domain in the mitochondrial inner membrane. Here we present a comprehensive analysis of the protein composition and(More)
In mitochondria, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. It contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters that transfer the electrons to quinone. Understanding electron transfer in complex I requires(More)
NADH:ubiquinone oxidoreductase (complex I) is a major source of reactive oxygen species in mitochondria and a contributor to cellular oxidative stress. In isolated complex I the reduced flavin is known to react with molecular oxygen to form predominantly superoxide, but studies using intact mitochondria contend that superoxide may result from a semiquinone(More)
The biguanide metformin is widely prescribed for Type II diabetes and has anti-neoplastic activity in laboratory models. Despite evidence that inhibition of mitochondrial respiratory complex I by metformin is the primary cause of its cell-lineage-specific actions and therapeutic effects, the molecular interaction(s) between metformin and complex I remain(More)
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, energy-transducing, membrane-bound enzyme that contains 45 different subunits, a non-covalently bound flavin mononucleotide, and eight iron-sulfur clusters. The mechanisms of NADH oxidation and intramolecular electron transfer by complex I are gradually being(More)
Bovine complex I is an assembly of 46 different proteins. Seven of them are encoded in mitochondrial DNA, and the rest are nuclear gene products that are imported into the organelle. Fourteen of the nuclear encoded subunits have modified N termini. Many of these post-translational modifications have been deduced previously from intact protein masses. These(More)
In mitochondria, complex I (NADH:ubiquinone oxidoreductase) uses the redox potential energy from NADH oxidation by ubiquinone to transport protons across the inner membrane, contributing to the proton-motive force. However, in some prokaryotes, complex I may transport sodium ions instead, and three subunits in the membrane domain of complex I are closely(More)
Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery(More)