Judith S. Sebolt-Leopold

Learn More
The kinase pathway comprising RAS, RAF, mitogen-activated protein kinase kinase (MEK) and extracellular signal regulated kinase (ERK) is activated in most human tumours, often through gain-of-function mutations of RAS and RAF family members. Using small-molecule inhibitors of MEK and an integrated genetic and pharmacologic analysis, we find that mutation of(More)
The RAS–mitogen activated protein kinase (MAPK) signalling pathway has long been viewed as an attractive pathway for anticancer therapies, based on its central role in regulating the growth and survival of cells from a broad spectrum of human tumours. Small-molecule inhibitors designed to target various steps of this pathway have entered clinical trials.(More)
The mitogen-activated protein kinase pathway is thought to be essential in cellular growth and differentiation. Here we report the discovery of a highly potent and selective inhibitor of the upstream kinase MEK that is orally active. Tumor growth was inhibited as much as 80% in mice with colon carcinomas of both mouse and human origin after treatment with(More)
MEK1 and MEK2 are closely related, dual-specificity tyrosine/threonine protein kinases found in the Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) signaling pathway. Approximately 30% of all human cancers have a constitutively activated MAPK pathway, and constitutive activation of MEK1 results in cellular transformation. Here we present the X-ray(More)
PURPOSE This multicenter, open-label, phase II study was undertaken to assess the antitumor activity and safety of the oral mitogen-activated extracellular signal regulated kinase kinase (MEK) inhibitor, CI-1040, in breast cancer, colon cancer, non-small-cell lung cancer (NSCLC), and pancreatic cancer. PATIENTS AND METHODS Patients with advanced(More)
A novel series of benzhydroxamate esters derived from their precursor anthranilic acids have been prepared and have been identified as potent MEK inhibitors. 2-(2-Chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide, CI-1040, was the first MEK inhibitor to demonstrate in vivo activity in preclinical animal models and subsequently became(More)
PURPOSE This phase I study was undertaken to define the toxicity, pharmacokinetics, pharmacodynamics, maximum tolerated dose (MTD), and clinical activity of CI-1040, a small-molecule inhibitor of the dual-specificity kinases MEK(mitogen-activated protein kinase kinase) -1 and MEK2 , in patients with advanced malignancy. PATIENTS AND METHODS CI-1040 was(More)
Kras is commonly mutated in colon cancers, but mutations in Nras are rare. We have used genetically engineered mice to determine whether and how these related oncogenes regulate homeostasis and tumorigenesis in the colon. Expression of K-RasG12D in the colonic epithelium stimulated hyperproliferation in a Mek-dependent manner. N-RasG12D did not alter the(More)
Since the discovery of the role of ras oncogenes in tumorigenesis, we have witnessed an explosion of research in the signal transduction area. In the quest to understand how Ras transmits extracellular growth signals, the MAP kinase (MAPK) pathway has emerged as the crucial route between membrane-bound Ras and the nucleus. The MAPK pathway encompasses a(More)
Several key growth factors, cytokines, and proto-oncogenes transduce their growth- and differentiation-promoting signals through the mitogen-activated protein kinase or extracellular signal-regulated protein kinase (ERK) cascade. Overexpression or constitutive activation of this pathway has been shown to play an important role in the pathogenesis and(More)