Learn More
Ligand-induced receptor oligomerization is a widely accepted mechanism for activation of cell-surface receptors. We investigated ligand-receptor interactions in the glial cell-line derived neurotrophic factor (GDNF) receptor complex, formed by the c-Ret receptor tyrosine kinase and the glycosylphosphatidylinositol (GPI)-anchored subunit GDNF family receptor(More)
Nerve growth factor (NGF) is a member of an expanding family of neurotrophic factors (including brain-derived neurotrophic factor and the neurotrophins) that control the development and survival of certain neuronal populations both in the peripheral and in the central nervous systems. Its biological effects are mediated by a high-affinity ligand-receptor(More)
Asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA) are endogenously produced amino acids that inhibit all three isoforms of nitric oxide synthase (NOS). ADMA accumulates in various disease states, including renal failure, diabetes and pulmonary hypertension, and its concentration in plasma is strongly predictive of premature cardiovascular(More)
The RET proto-oncogene encodes a receptor tyrosine kinase for the glial cell line-derived neurotrophic factor family of ligands. Loss-of-function mutations in RET are implicated in Hirschsprung disease, whereas activating mutations in RET are found in human cancers, including familial medullar thyroid carcinoma and multiple endocrine neoplasias 2A and 2B.(More)
Nerve growth factor (NGF), like many other growth factors and hormones, binds to two different receptor molecules on responsive cells. The product of the proto-oncogene trk, p140trk, is a tyrosine kinase receptor that has been identified as a signal-transducing receptor for NGF, while the role of the low affinity NGF receptor, p75NGFR, in signal(More)
The neurotrophins mediate their effects through binding to two classes of receptors, a tyrosine kinase receptor, member of the Trk family, and the low-affinity neurotrophin receptor, p75LNGFR, of as yet undefined signalling capacity. The need for a two-component receptor system in neurotrophin signalling is still not understood. Using site-directed(More)
Neurotrophin-mediated cell survival and differentiation of vertebrate neurons is caused by ligand-specific binding to the Trk family of tyrosine kinase receptors. However, sites in the neurotrophins responsible for the binding to Trk receptors and the mechanisms whereby this interaction results in receptor activation and biological activity are unknown.(More)
Ligand-induced receptor oligomerization is a widely accepted mechanism for activation of cell-surface receptors. We investigated ligand–receptor interactions in the glial cell-line derived neurotrophic factor (GDNF) receptor complex, formed by the c-Ret receptor tyrosine kinase and the glycosylphosphatidylinositol (GPI)-anchored subunit GDNF family receptor(More)
Actin-related proteins (Arps) are a highly conserved family of proteins that have extensive sequence and structural similarity to actin. All characterized Arps are components of large multimeric complexes associated with chromatin or the cytoskeleton. In addition, the human genome encodes five conserved but largely uncharacterized "orphan" Arps, which(More)