Judith Martini

Learn More
The microvascular distribution of oxygen was studied in the arterioles and venules of the awake hamster window chamber preparation to determine the contribution of vascular smooth muscle contraction to oxygen consumption of the microvascular wall during arginine vasopressin (AVP)-induced vasoconstriction. AVP was infused intravenously at the clinical dosage(More)
BACKGROUND This study was conducted to assess whether the combined administration of fibrinogen and prothrombin complex concentrate (PCC) enables the reversal of dilutional coagulopathy resulting from intended blood loss and fluid replacement, and whether this treatment reduces further blood loss and mortality. METHODS In 20 anaesthetized pigs,(More)
The circulation is adapted to specific levels of blood viscosity resulting in a balance that simultaneously sets peripheral vascular resistance, blood pressure and cardiac output, factors in part mediated by the production of nitric oxide by the endothelium. Although it is generally perceived that decreasing blood viscosity is beneficial for cardiovascular(More)
Hematocrit (Hct) of awake hamsters and CD-1 mice was acutely increased by isovolemic exchange transfusion of packed red blood cells (RBCs) to assess the relation between Hct and blood pressure. Increasing Hct 7-13% of baseline decreased mean arterial blood pressure (MAP) by 13 mmHg. Increasing Hct above 19% reversed this trend and caused MAP to rise above(More)
The hematocrit (Hct) of awake hamsters was lowered to 90% of baseline by isovolemic hemodilution using hamster plasma to determine the acute effect of small changes in Hct and blood viscosity on systemic hemodynamics. Mean arterial blood pressure increased, reaching a maximum of about 10% above baseline (8.6 +/- 5.5 mmHg) when Hct decreased 8.4 +/- 1.9% (P(More)
INTRODUCTION This study was designed to examine differences in the arteriolar vasoconstrictive response between arginine vasopressin (AVP) and norepinephrine (NE) on the microcirculatory level in the hamster window chamber model in unanesthetized, normotonic hamsters using intravital microscopy. It is known from patients with advanced vasodilatory shock(More)
PURPOSE We report the MR findings in nine patients with clinical and laboratory evidence of Kallmann syndrome (KS), a genetic disorder of olfactory and gonadal development. In patients with KS, cells that normally express luteinizing hormone-releasing hormone fail to migrate from the medial olfactory placode along the terminalis nerves into the forebrain.(More)
Responses to exchange transfusion with red blood cells (RBCs) containing methemoglobin (MetRBC) were studied in an acute isovolemic hemodiluted hamster window chamber model to determine whether oxygen content participates in the regulation of systemic and microvascular conditions during extreme hemodilution. Two isovolemic hemodilution steps were performed(More)
Decreasing blood viscosity has been proposed since the advent of hemodilution as a means for increasing perfusion in many pathological conditions, and increased plasma viscosity is associated with the presence of pathological conditions. However, experimental studies show that microvascular functions as represented by functional capillary density in(More)
The increase of plasma and blood viscosity is usually associated with pathological conditions; however, elevation of both parameters often results in increased perfusion and the lowering of peripheral vascular resistance. In extreme haemodilution, blood viscosity is too low and insufficient to maintain functional capillary density, a problem that in(More)