Judith L. Campbell

Learn More
Repair of dsDNA breaks requires processing to produce 3'-terminated ssDNA. We biochemically reconstituted DNA end resection using purified human proteins: Bloom helicase (BLM); DNA2 helicase/nuclease; Exonuclease 1 (EXO1); the complex comprising MRE11, RAD50, and NBS1 (MRN); and Replication protein A (RPA). Resection occurs via two routes. In one, BLM and(More)
The repair of DNA double-strand breaks (DSBs) by homologous recombination requires processing of broken ends. For repair to start, the DSB must first be resected to generate a 3'-single-stranded DNA (ssDNA) overhang, which becomes a substrate for the DNA strand exchange protein, Rad51 (ref. 1). Genetic studies have implicated a multitude of proteins in the(More)
During purification of recombinant Cdc6 expressed in yeast, we found that Cdc6 interacts with the critical cell cycle, cyclin-dependent protein kinase Cdc28. Cdc6 and Cdc28 can be coimmunoprecipitated from extracts, Cdc6 is retained on the Cdc28-binding matrix p13-agarose, and Cdc28 is retained on an affinity column charged with bacterially produced Cdc6.(More)
As part of the preparatory work for the RADARSAT-2 moving object detection experiment (MODEX special operating mode), an airborne experiment was conducted at Canadian Forces Base Petawawa in July 1999 to study synthetic aperture radar (SAR) along-track interferometry (ATI) and SAR displaced phase centre antenna (DPCA) as candidate measurement techniques.(More)
Yeast Mrc1, ortholog of metazoan Claspin, is both a central component of normal DNA replication forks and a mediator of the S phase checkpoint. We report that Mrc1 interacts with Pol2, the catalytic subunit of DNA polymerase epsilon, essential for leading-strand DNA replication and for the checkpoint. In unperturbed cells, Mrc1 interacts independently with(More)
The replication initiation protein Cdc6p forms a tight complex with Cdc28p, specifically with forms of the kinase that are competent to promote replication initiation. We now show that potential sites of Cdc28 phosphorylation in Cdc6p are required for the regulated destruction of Cdc6p that has been shown to occur during the Saccharomyces cerevisiae cell(More)
As first observed by Wittenberg (Kesti, T., Flick, K., Keranen, S., Syvaoja, J. E., and Wittenburg, C. (1999) Mol. Cell 3, 679-685), we find that deletion mutants lacking the entire N-terminal DNA polymerase domain of yeast pol epsilon are viable. However, we now show that point mutations in DNA polymerase catalytic residues of pol epsilon are lethal. Taken(More)
We have recently described a new helicase, the Dna2 helicase, that is essential for yeast DNA replication. We now show that the yeast FEN-1 (yFEN-1) nuclease interacts genetically and biochemically with Dna2 helicase. FEN-1 is implicated in DNA replication and repair in yeast, and the mammalian homolog of yFEN-1 (DNase IV, FEN-1, or MF1) participates in(More)
We have developed a system to reconstitute all of the proposed steps of Okazaki fragment processing using purified yeast proteins and model substrates. DNA polymerase delta was shown to extend an upstream fragment to displace a downstream fragment into a flap. In most cases, the flap was removed by flap endonuclease 1 (FEN1), in a reaction required to(More)
It has been proposed that C-terminal motifs of the catalytic subunit of budding yeast polymerase (pol) epsilon (POL2) couple DNA replication to the S/M checkpoint (Navas, T. A., Zheng, Z., and Elledge, S. J. (1995) Cell 80, 29-39). Scanning deletion analysis of the C terminus reveals that 20 amino acid residues between two putative C-terminal zinc fingers(More)