Learn More
The accumulation of misfolded proteins in intracellular amyloid inclusions, typical of many neurodegenerative disorders including Huntington's and prion disease, is thought to occur after failure of the cellular protein quality control mechanisms. Here we examine the formation of misfolded protein inclusions in the eukaryotic cytosol of yeast and mammalian(More)
Aggregation of proteins containing polyglutamine (polyQ) expansions characterizes many neurodegenerative disorders, including Huntington's disease. Molecular chaperones modulate the aggregation and toxicity of the huntingtin (Htt) protein by an ill-defined mechanism. Here we determine how the chaperonin TRiC suppresses Htt aggregation. Unexpectedly, TRiC(More)
Molecular chaperones assist the folding of newly translated and stress-denatured proteins. In prokaryotes, overlapping sets of chaperones mediate both processes. In contrast, we find that eukaryotes evolved distinct chaperone networks to carry out these functions. Genomic and functional analyses indicate that in addition to stress-inducible chaperones that(More)
The mechanisms by which molecular chaperones assist quality control of cytosolic proteins are poorly understood. Analysis of the chaperone requirements for degradation of misfolded variants of a cytosolic protein, the VHL tumor suppressor, reveals that distinct chaperone pathways mediate its folding and quality control. While both folding and degradation of(More)
Protein function is often regulated by posttranslational modifications (PTMs), and recent advances in mass spectrometry have resulted in an exponential increase in PTM identification. However, the functional significance of the vast majority of these modifications remains unknown. To address this problem, we compiled nearly 200,000 phosphorylation,(More)
The extensive links between proteotoxic stress, protein aggregation and pathologies ranging from ageing to neurodegeneration underscore the importance of understanding how cells manage protein misfolding. Using live-cell imaging, we determine the fate of stress-induced misfolded proteins from their initial appearance until their elimination. Upon(More)
The choice of codons can influence local translation kinetics during protein synthesis. Whether codon preference is linked to cotranslational regulation of polypeptide folding remains unclear. Here, we derive a revised translational efficiency scale that incorporates the competition between tRNA supply and demand. Applying this scale to ten closely related(More)
Chaperonins use ATPase cycling to promote conformational changes leading to protein folding. The prokaryotic chaperonin GroEL requires a cofactor, GroES, which serves as a "lid" enclosing substrates in the central cavity and confers an asymmetry on GroEL required for cooperative transitions driving the reaction. The eukaryotic chaperonin TRiC/CCT does not(More)
Polypeptides exiting the ribosome must fold and assemble in the crowded environment of the cell. Chaperones and other protein homeostasis factors interact with newly translated polypeptides to facilitate their folding and correct localization. Despite the extensive efforts, little is known about the specificity of the chaperones and other factors that bind(More)
Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, approximately 1 megadalton, consist of two back-to-back rings encompassing a central cavity that accommodates polypeptide substrates. Chaperonin-mediated protein folding is critically dependent on the closure of a built-in(More)