Learn More
We examined the relationship of age-related losses of striatal dopamine transporter (DAT) density to age-related deficits in episodic memory and executive functioning in a group of subjects (n = 12) ranging from 34 to 81 years of age. The radioligand [(11)C]beta-CIT-FE was used to determine DAT binding in caudate and putamen. Results showed clear(More)
BACKGROUND Sleep deprivation (wake therapy) provides rapid clinical relief in many patients with major depressive disorder (MDD). Changes in glutamatergic neurotransmission may contribute to the antidepressant response, yet the exact underlying mechanisms are unknown. Metabotropic glutamate receptors of subtype 5 (mGluR5) are importantly involved in(More)
OBJECTIVE Clinical and preclinical evidence suggests a hyperactive glutamatergic system in clinical depression. Recently, the metabotropic glutamate receptor 5 (mGluR5) has been proposed as an attractive target for novel therapeutic approaches to depression. The goal of this study was to compare mGluR5 binding (in a positron emission tomography [PET] study)(More)
(S,S)-2-(alpha-(2-Fluoromethoxyphenoxy)benzyl)morpholine ((S,S)-FMeNER) was found to be a selective high-affinity ligand for the norepinephrine transporter (NET). (S,S)-FMeNER) was labeled with fluorine-18 (t1/2 = 109.8 min) by O-fluoromethylation of desfluoromethoxy-(S,S)-FMeNER with [18F]bromofluoromethane. An analog, di-deuterated in the fluoromethoxy(More)
Nicotine addiction is a major public health problem, resulting in primary glutamatergic dysfunction. We measured the glutamate receptor binding in the human brain and provided direct evidence for the abnormal glutamate system in smokers. Because antagonism of the metabotropic glutamate receptor 5 (mGluR5) reduced nicotine self-administration in rats and(More)
(S,S)-2-(alpha-(2-Methoxyphenoxy)benzyl)morpholine (MeNER), an O-methyl analog of the selective and potent norepinephrine transporter (NET) inhibitor, (S,S)-reboxetine, and its less active enantiomer, (R,R)-MeNER, have each been radiolabeled by O-methylation of their corresponding phenolic precursors in good yields from [(11)C]methyl iodide or [(11)C]methyl(More)
The aim of this study was to explore the potential of a new selective serotonin transporter (5-HTT) inhibitor, N,N-dimethyl-2-(2-amino-4-methylphenylthio)benzylamine (MADAM, K(i)=1.65 nM), as a PET radioligand for examination of 5-HTT in the nonhuman primate brain. MADAM was radiolabeled by an N-methylation reaction using [(11)C]methyl triflate and the(More)
(R)-1-(10,11-Dihydro-dibenzo[b,f]azepin-5-yl)-3-methylamino-propan-2-ol ((R)-OHDMI) and (S,S)-1-cyclopentyl-2-(5-fluoro-2-methoxy-phenyl)-1-morpholin-2-yl-ethanol (CFMME) were synthesized and found to be potent inhibitors of norepinephrine reuptake. Each was labelled efficiently in its methyl group with carbon-11 (t(1/2)=20.4 min) as a prospective(More)
This study describes the preliminary positron emission tomography (PET) evaluation of a dopamine D(2)-like receptor agonist, (R)-2-(11)CH(3)O-N-n-propylnorapomorphine ([(11)C]MNPA), as a potential new radioligand for in vivo imaging of the high-affinity state of the dopamine D(2) receptor (D(2)R). MNPA is a selective D(2)-like receptor agonist with a high(More)
BACKGROUND (S,S)-[F]FMeNER-D2 is a recently developed norepinephrine transporter ligand which is a potentially useful radiotracer for mapping the brain and heart norepinephrine transporter in vivo using positron emission tomography. In this work, we quantified the biodistribution over time and radiation exposure to multiple organs with (S,S)-[F]FMeNER-D2.(More)