Learn More
Radiotherapy technology has improved rapidly over the past two decades. New imaging modalities, such as positron emission (computed) tomography (PET, PET-CT) and high-resolution morphological and functional magnetic resonance imaging (MRI) have been introduced into the treatment planning process. Image-guided radiation therapy (IGRT) with 3D soft tissue(More)
Substrate-adherent cultured cells derived from human bone marrow or umbilical cord blood ("mesenchymal stem cells") are of special interest for regenerative medicine. We report that such cells, which can display considerable heterogeneity with respect to their cytoskeletal protein complement, are often interconnected by special tentacle-like cell processes(More)
Intensity modulated radiotherapy (IMRT) has improved the capability to apply geometrically individualised high radiotherapy doses to the prostate bed, prostate and seminal vesicles. A high risk of geometrical miss with conformal methods, however, has been documented for mobile targets such as the prostate. Modern, non-invasive localisation techniques are(More)
BACKGROUND AND PURPOSE Radiosurgery of liver metastases is effective but a technical challenge due to respiration-induced movement. The authors report on the initial experience of the combination of active breathing control (ABC) with stereotactic ultrasound (B-mode acquisition and targeting [BAT]) for frameless radiosurgery. PATIENTS AND METHODS A(More)
PURPOSE The repositioning accuracy of mask-based fixation systems has been assessed with two-dimensional/two-dimensional or two-dimensional/three-dimensional (3D) matching. We analyzed the accuracy of commercially available head mask systems, using true 3D/3D matching, with X-ray volume imaging and cone-beam CT. METHODS AND MATERIALS Twenty-one patients(More)
PURPOSE Positioning verification is usually performed with treatment beam (MV) portal images (PI) using an electronic portal imaging device (EPID). A new alternative is the use of a low energy photon source (kV) and an additional EPID mounted to the accelerator gantry. This system may be used for PI or--with rotating gantry--as cone-beam CT (CBCT). The dose(More)
BACKGROUND AND PURPOSE Computer controlled breath-hold effectively reduces organ motion for image-guided precision radiotherapy of lung tumors. However, the acquisition time of 3D cone-beam-CT (CBCT) exceeds maximum breath-hold times. We have developed an approach enabling online verification using CBCT image acquisition with ABC®-based breath-hold. (More)
The genes encoding transmembrane glycoproteins of the cadherin family, i.e., the Ca(2+)-dependent cell-cell adhesion molecules, are typically expressed in cell-type- or cell-lineage-specific patterns. One of them, vascular endothelial (VE)-cadherin, is widely considered to be specific for vascular endothelia in which it is either the sole or the predominant(More)
Several recent developments in linear accelerator-based radiation therapy (RT) such as fast multileaf collimators, accelerated intensity modulation paradigms like volumeric modulated arc therapy and flattening filter-free (FFF) high-dose-rate therapy have dramatically shortened the duration of treatment fractions. Deliverable photon dose distributions have(More)
AIMS AND METHODS Delivery of high radiation doses while simultaneously sparing organs at risk requires advanced imaging for target volume definition, highly conformal dose distributions of intensity modulated radiotherapy (IMRT), and narrow planning target volume (PTV) margins. Three-dimensional image-guided radiotherapy (IGRT) with cone-beam computer(More)