Learn More
Manganese (Mn) is known to induce mitochondrial dysfunction in excessive dose; however the mechanisms underlying its action are not elucidated clearly. To determine if Mn2+ can act directly on mitochondria or indirectly by producing reactive oxygen species (ROS), isolated mitochondria were exposed to different concentration of Mn2+ (5, 50, 500, 1000(More)
Manganese (Mn) is an essential trace element found in many enzymes, however, excessive Mn-exposure can result in manganism which is similar to Parkinson's movement disorder. The mechanisms of manganism are not well-known. The present in vivo study was carried out to determine whether endoplasmic reticulum stress (ER stress) and ER stress-mediated apoptosis(More)
In the present study, we investigated the effects of manganese chloride (MnCl2) on cell cycle progression in A549 cells used as a model of Mn-induced lung toxicity. Cells were treated with various concentrations of MnCl2 (0, 0.01, 0.1, 0.5, 1.0 or 2.0 mM) for 24, 48 or 72 h. Cell proliferation was determined with MTT assay and mitotic index measurement and(More)
In order to elucidate the feasibility of predicting liver and kidney target-organ toxicity using in vitro cytotoxicity assay, cytotoxicity of selected chemicals, acetaminophen (AAP), mitomycin (MMC), cupric chloride (CuCl2), phenacetin, cadmium chloride (CdCl2) and aristolochic acid (AA), was studied using human hepatoma (Bel-7402) cells and human renal(More)
Manganese (Mn) is an essential trace element found in many enzymes. As is the case for many essential trace elements, excessive Mn is toxic. Individuals suffering from manganese toxicity exhibit several symptoms, which are similar to those frequently observed in cases of Parkinson's disease. In this investigation, we studied the effect of manganese chloride(More)
In this study, we investigated the effects of diethyl sulfate (DES) on cell proliferation, cell cycle progression and apoptosis in human bronchial epithelial 16HBE cells. Cells were treated with various doses of DES (0, 0.5, 1.0, 2.0, 4.0 or 8.0mM) for 12, 24 or 36h. Cell proliferation and apoptosis were determined by MTT assay and flow cytometer,(More)
To probe the mitochondrial involvement in Mn intoxicity, aliquots of brain mitochondria samples from control and treated (30 mg/kg manganese chloride, ip) male Sprague-Dawley rats were separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and searched for protein abundance changes induced by Mn exposure. The electrophoretic separation(More)
In the present study, we investigated the proteomic profiling of anti-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (anti-BPDE)-transformed human bronchial epithelial cell line (16HBE-C) and its parental cell line (16HBE) G0/G1 cells. Differential analysis of proteomic profiling indicated that 67 polypeptides were down-regulated and 77 polypeptides were(More)
The function of centrosome that serves as the main microtubule organizing center is essential to ensure the genomic integrity during the cell division cycle. Centrosome abnormalities are frequently observed in many tumors and cells exposed to genotoxic agents. Here, we investigated the centrosome abnormalities induced by diethyl sulfate (DES) in Chinese(More)
The aim of this study was to examine the single strand breaks (SSB) of mitochondrial DNA (mtDNA) induced by MnCl(2) in vitro and in vivo and discuss the possible underlying mechanism. In in vitro study the formation of mtDNA SSB and reactive oxygen species (ROS) in isolated hepatic mitochondria treated with MnCl(2) (0-1.0mmolL(-1)) was observed. In in vivo(More)