Learn More
Previous in vivo studies have demonstrated that vascular endothelial damage can result when vessels containing gas-based microbubble ultrasound contrast agent (UCA) are exposed to MHz-frequency pulsed ultrasound (US) of sufficient pressure amplitudes, presumably as a result of inertial cavitation (IC). The hypothesis guiding this research was that IC is the(More)
In traditional Chinese medicine, Ligusticum wallichii (Chuan Xiong) and its bioactive ingredient, tetramethylpyrazine (TMP), have been used to treat cardiovascular diseases and to relieve various neurological symptoms, such as those associated with ischemic injury. In the present study, we investigated whether ultrasound (US) exposure could enhance the(More)
Previous studies have demonstrated that the efficiency of gene/drug delivery can be enhanced under ultrasound (US) exposure with the presence of US contrast agent microbubbles, due to the acoustic cavitation-induced sonoporation. However, obstacles still remain to achieve controllable sonoporation outcome. The general hypotheses guiding present studies were(More)
High intensity focused ultrasound (HIFU)-induced hyperthermia is a promising tool for cancer therapy. Three-dimensional nonlinear acoustic-bioheat transfer-blood flow-coupling model simulations and in vivo thermocouple measurements were performed to study hyperthermia effects in rabbit auricular vein exposed to pulsed HIFU (pHIFU) at varied duty cycles(More)
Inertial cavitation (IC) is an important mechanism by which ultrasound (US)-induced bioeffects can be produced. It has been reported that US-induced in vitro mechanical bioeffects with the presence of ultrasound contrast agents (UCAs) are highly correlated with quantified IC "dose" (ICD: cumulated root-mean-squared broadband noise amplitude in the frequency(More)
The inertial cavitation (IC) activity of ultrasound contrast agents (UCAs) plays an important role in the development and improvement of ultrasound diagnostic and therapeutic applications. However, various diagnostic and therapeutic applications have different requirements for IC characteristics. Here through IC dose quantifications based on passive(More)
In the present work, human breast cancer cells MCF-7 mixed with polyethylenimine: deoxyribonucleic acid complex and microbubbles were exposed to 1-MHz ultrasound at low acoustic driving pressures ranging from 0.05 to 0.3 MPa. The sonoporation pores generated on the cell membrane were examined with scanning electron microscopy. The transfection efficiency(More)
Experiments were performed to measure the dynamical response of individual SonoVue microbubbles subjected to pulsed ultrasound. Three commonly used bubble dynamic models (i.e., Hoff's, Sarkar's, and linearized Marmottant's models) were compared to determine the most appropriate model for fitting to the experimental data. The models were evaluated against(More)
This study evaluated the cavitation activity induced by shock wave (SW) pulses, both in vitro and in vivo, based on the area measurements of echogenic regions observed in B-mode ultrasound images. Residual cavitation bubble clouds induced by SW pulses were detected as echogenic regions in B-mode images. The temporal evolution of residual bubble clouds,(More)
One isoform of the vascular endothelial growth factor, VEGF(165), has been reported to be a dominant mediator and regulator of angiogenic process, which plays an important role in treating cardiovascular diseases and chronically ischemic wounds. Branched polyethylenimine (bPEI) has been widely used as a non-viral delivery vector for gene therapy. Although(More)