Learn More
Axon regeneration is crucial for recovery after trauma to the nervous system. For neurons to recover from complete axon removal they must respecify a dendrite as an axon: a complete reversal of polarity. We show that Drosophila neurons in vivo can convert a dendrite to a regenerating axon and that this process involves rebuilding the entire neuronal(More)
This study aims to review clinical features, treatments, and prognostic factors of thrombotic thrombocytopenic purpura (TTP) associated with systemic lupus erythematosus patients (sTTP). The case reports of sTTP published in world literature from 1999 to 2011 were collected, and 105 cases were divided into death group and survival group. The epidemiologic(More)
BACKGROUND in many differentiated cells, microtubules are organized into polarized noncentrosomal arrays, yet few mechanisms that control these arrays have been identified. For example, mechanisms that maintain microtubule polarity in the face of constant remodeling by dynamic instability are not known. Drosophila neurons contain uniform-polarity(More)
RasGRP3 mediates the activation of the Ras signaling pathway that is present in many human cancers. Here, we explored the involvement of RasGRP3 in the formation and maintenance of the prostate cancer phenotype. RasGRP3 expression was elevated in multiple human prostate tumor tissue samples and in the human androgen-independent prostate cancer cell lines(More)
We report a case of an 18-month-old boy with slightly whitened fingernails and toenails since birth. At the age of 100 days, he progressively developed bilateral palmoplantar keratoderma which resulted in painful walking and disabled grasping. Perianal keratotic plaques and perioral hyperkeratotic erythema could also be observed. Both fingernails and(More)
OBJECTIVES To investigate the effect of a Chinese traditional medicine, gambogic acid (GA), on human malignant melanoma (MM) A375 cells and to study the mechanism of apoptosis induced by GA. METHODS A375 cells were treated with GA at different doses and for different times, and their proliferation and viability were detected by(More)
Neurons have two types of processes: axons and dendrites. Axons have an active disassembly program activated by severing. It has not been tested whether dendrites have an analogous program. We sever Drosophila dendrites in vivo and find that they are cleared within 24 h. Morphologically, this clearance resembles developmental dendrite pruning and, to some(More)
Axon injury elicits profound cellular changes, including axon regeneration. However, the full range of neuronal injury responses remains to be elucidated. Surprisingly, after axons of Drosophila dendritic arborization neurons were severed, dendrites were more resistant to injury-induced degeneration. Concomitant with stabilization, microtubule dynamics in(More)
Axon regeneration allows neurons to repair circuits after trauma; however, most of the molecular players in this process remain to be identified. Given that microtubule rearrangements have been observed in injured neurons, we tested whether microtubule-severing proteins might play a role in axon regeneration. We found that axon regeneration is extremely(More)